SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Epifani Elena Mazzotta) "

Sökning: WFRF:(Epifani Elena Mazzotta)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Deshapriya, Jasinghege Don Prasanna, et al. (författare)
  • Clustering the properties of near-Earth objects : physico-dynamical links among NEOs
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 674
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. At present, near-Earth objects (NEOs) are being discovered at an ever-increasing rate. However, their physical characterisation is still significantly lagging behind. In particular, the taxonomic classification of newly discovered NEOs is of great importance with regard to improving our understanding of the population of NEOs.Aims. In this context, our goal is to probe potential links between orbital properties of NEOs and their composition. We investigate whether we can make a reasonable guess about the taxonomic class of an NEO upon its discovery with a decent orbital accuracy.Methods. We used a G-mode multivariate statistical clustering method to find homogeneous clusters in a dataset composed of orbital elements of NEOs. We adopted two approaches, using two sets of variables as inputs to the G-mode method. In each approach, we analysed the available taxonomic distribution of resulting clusters to find potential correlations with several unique parameters that distinctively characterise NEOs. We then applied a dynamical model on the same clusters to trace their escape regions.Results. Approach 1 (A1) led us to obtain NEO clusters that can be linked to a primitive composition. This result was further strengthened by the dynamical model, which mapped outer-belt sources as escape regions for these clusters. We remark on the finding of a cluster akin to S-type NEOs in highly eccentric orbits during the same approach (A1). Two clusters, one with small NEOs in terrestriallike orbits and one with relatively high inclinations, were found to be common to both approaches. Approach 2 (A2) revealed three clusters that are only separable by their arguments of perihelion. Taken altogether, they make up the majority of known Atira asteroids.Conclusions. For an NEO whose orbit is relatively well determined, we propose a model to determine whether the taxonomy of an NEO is siliceous or primitive if the orbital elements of the NEO fall within the presented combinations of inclination, eccentricity, and semi-major axis ranges.
  •  
2.
  • Jones, Geraint H., et al. (författare)
  • The Comet Interceptor Mission
  • 2024
  • Ingår i: Space Science Reviews. - : Springer Nature. - 0038-6308 .- 1572-9672. ; 220:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA’s F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum Δ V capability of 600 ms − 1 . Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes – B1, provided by the Japanese space agency, JAXA, and B2 – that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission’s science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule.
  •  
3.
  • Li, Jian-Yang, et al. (författare)
  • Ejecta from the DART-produced active asteroid Dimorphos
  • 2023
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 616, s. 452-456
  • Tidskriftsartikel (refereegranskat)abstract
    • Some active asteroids have been proposed to be formed as a result of impact events1. Because active asteroids are generally discovered by chance only after their tails have fully formed, the process of how impact ejecta evolve into a tail has, to our knowledge, not been directly observed. The Double Asteroid Redirection Test (DART) mission of NASA2, in addition to having successfully changed the orbital period of Dimorphos3, demonstrated the activation process of an asteroid resulting from an impact under precisely known conditions. Here we report the observations of the DART impact ejecta with the Hubble Space Telescope from impact time T + 15 min to T + 18.5 days at spatial resolutions of around 2.1 km per pixel. Our observations reveal the complex evolution of the ejecta, which are first dominated by the gravitational interaction between the Didymos binary system and the ejected dust and subsequently by solar radiation pressure. The lowest-speed ejecta dispersed through a sustained tail that had a consistent morphology with previously observed asteroid tails thought to be produced by an impact4,5. The evolution of the ejecta after the controlled impact experiment of DART thus provides a framework for understanding the fundamental mechanisms that act on asteroids disrupted by a natural impact1,6.
  •  
4.
  • Rothery, David, et al. (författare)
  • Mercury's surface and composition to be studied by BepiColombo
  • 2010
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 58:1-2, s. 21-39
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe the contributions that we expect the BepiColombo mission to make towards increased knowledge and understanding of Mercury's surface and composition. BepiColornbo will have a larger and more capable Suite of instruments relevant for determination of the topographic, physical, chemical and mineralogical properties of the surface than carried by NASA's MESSENGER mission. We anticipate that the insights gained into the planet's geological history and its current space weathering environment will enable us to understand the relationships between surface composition and the composition of different types of crust. This will enable estimation of the composition of the mantle from which the crust was derived, and lead to better constraints on models for Mercury's origin and the nature of the material from which it formed.
  •  
5.
  • Rotundi, Alessandra, et al. (författare)
  • Dust measurements in the coma of comet 67P/Churyumov-Gerasimenko inbound to the Sun
  • 2015
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 347:6220
  • Tidskriftsartikel (refereegranskat)abstract
    • Critical measurements for understanding accretion and the dust/gas ratio in the solar nebula, where planets were forming 4.5 billion years ago, are being obtained by the GIADA (Grain Impact Analyser and Dust Accumulator) experiment on the European Space Agency's Rosetta spacecraft orbiting comet 67P/Churyumov-Gerasimenko. Between 3.6 and 3.4 astronomical units inbound, GIADA and OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) detected 35 outflowing grains of mass 10(-10) to 10(-7) kilograms, and 48 grains of mass 10(-5) to 10(-2) kilograms, respectively. Combined with gas data from the MIRO (Microwave Instrument for the Rosetta Orbiter) and ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instruments, we find a dust/gas mass ratio of 4 +/- 2 averaged over the sunlit nucleus surface. A cloud of larger grains also encircles the nucleus in bound orbits from the previous perihelion. The largest orbiting clumps are meter-sized, confirming the dust/gas ratio of 3 inferred at perihelion from models of dust comae and trails.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy