SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Erfanian M. B.) "

Sökning: WFRF:(Erfanian M. B.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
2.
  • Alatalo, J. M., et al. (författare)
  • Bryophyte cover and richness decline after 18 years of experimental warming in alpine Sweden
  • 2020
  • Ingår i: Aob Plants. - Oxford : Oxford University Press (OUP). - 2041-2851. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is expected to affect alpine and Arctic tundra communities. Most previous long-term studies have focused on impacts on vascular plants, this study examined impacts of long-term warming on bryophyte communities. Experimental warming with open-top chambers (OTCs) was applied for 18 years to a mesic meadow and a dry heath alpine plant community. Species abundance was measured in 1995, 1999, 2001 and 2013. Species composition changed significantly from original communities in the heath, but remained similar in mesic meadow. Experimental warming increased beta diversity in the heath. Bryophyte cover and species richness both declined with long-term warming, while Simpson diversity showed no significant responses. Over the 18-year period, bryophyte cover in warmed plots decreased from 43 % to 11 % in heath and from 68 % to 35 % in meadow (75 % and 48 % decline, respectively, in original cover), while richness declined by 39 % and 26 %, respectively. Importantly, the decline in cover and richness first emerged after 7 years. Warming caused significant increase in litter in both plant communities. Deciduous shrub and litter cover had negative impact on bryophyte cover. We show that bryophyte species do not respond similarly to climate change. Total bryophyte cover declined in both heath and mesic meadow under experimental long-term warming (by 1.5-3 degrees C), driven by general declines in many species. Principal response curve, cover and richness results suggested that bryophytes in alpine heath are more susceptible to warming than in meadow, supporting the suggestion that bryophytes may be less resistant in drier environments than in wetter habitats. Species loss was slower than the decline in bryophyte abundance, and diversity remained similar in both communities. Increased deciduous shrub and litter cover led to decline in bryophyte cover. The non-linear response to warming over time underlines the importance of long-term experiments and monitoring.
  •  
3.
  • Alatalo, J. M., et al. (författare)
  • Changes in plant composition and diversity in an alpine heath and meadow after 18 years of experimental warming
  • 2022
  • Ingår i: Alpine Botany. - Basel : Springer Science and Business Media LLC. - 1664-2201 .- 1664-221X. ; 132, s. 181-193
  • Tidskriftsartikel (refereegranskat)abstract
    • Global warming is expected to have large impacts on high alpine and Arctic ecosystems in the future. Here we report effects of 18 years of experimental warming on two contrasting high alpine plant communities in subarctic Sweden. Using open-top chambers, we analysed effects of long-term passive experimental warming on a heath and a meadow. We determined the impact on species composition, species diversity (at the level of rare, common and dominant species), and phylogenetic and functional diversity. Long-term warming drove differentiation in species composition in both communities; warmed plots, but not control plots, had distinctly different species composition in 2013 compared with 1995. Beta diversity increased in the meadow, while it decreased in the heath. Long-term warming had significant negative effects on the three orders of phylogenetic Hill diversity in the meadow. There was a similar tendency in the heath, but only phylogenetic diversity of dominant species was significantly affected. Long-term warming caused reductions in forbs in the heath, while evergreen shrubs increased. In the meadow, deciduous and evergreen shrubs showed increased abundance from 2001 to 2013 in warmed plots. Responses in species and phylogenetic diversity to experimental warming varied over both time (medium (7 years) vs long-term (18 years)) and space (between two neighbouring plant communities). The meadow community was more negatively affected in terms of species and phylogenetic diversity than the heath community. A potential driver for the changes in the meadow may be decreased soil moisture caused by long-term warming.
  •  
4.
  • Alatalo, J. M., et al. (författare)
  • Impact of ambient temperature, precipitation and seven years of experimental warming and nutrient addition on fruit production in an alpine heath and meadow community
  • 2022
  • Ingår i: Science of the Total Environment. - Amsterdam : Elsevier BV. - 0048-9697 .- 1879-1026. ; 836
  • Tidskriftsartikel (refereegranskat)abstract
    • Alpine and polar regions are predicted to be among the most vulnerable to changes in temperature, precipitation, and nutrient availability. We carried out a seven-year factorial experiment with warming and nutrient addition in two alpine vegetation communities. We analyzed the relationship between fruit production and monthly mean, maximum, and min temperatures during the fall of the pre-fruiting year, the fruiting summer, and the whole fruit production period, and measured the effects of precipitation and growing and thawing degree days (GDD & TDD) on fruit production. Nutrient addition (heath: 27.88 +/- 3.19 fold change at the end of the experiment; meadow: 18.02 +/- 4.07) and combined nutrient addition and warming (heath: 20.63 +/- 29.34 fold change at the end of the experiment; meadow: 18.21 +/- 16.28) increased total fruit production and fruit production of graminoids. Fruit production of evergreen and deciduous shrubs fluctuated among the treatments and years in both the heath and meadow. Pre-maximum temperatures had a negative effect on fruit production in both communities, while current year maximum temperatures had a positive impact on fruit production in the meadow. Pre-minimum, pre-mean, current mean, total minimum, and total mean temperatures were all positively correlated with fruit production in the meadow. The current year and total precipitation had a negative effect on the fruit production of deciduous shrubs in the heath. GDD had a positive effect on fruit production in both communities, while TDD only impacted fruit production in the meadow. Increased nutrient availability increased fruit production over time in the high alpine plant communities, while experimental warming had either no effect or a negative effect. Deciduous shrubs were the most sensitive to climate parameters in both communities, and the meadow was more sensitive than the heath. The difference in importance of TDD for fruit production may be due to differences in snow cover in the two communities.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy