SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ergon Mattias 1967 ) "

Sökning: WFRF:(Ergon Mattias 1967 )

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ergon, Mattias, 1967-, et al. (författare)
  • Light curve and spectral modelling of the type IIb SN 2020acat. Evidence for a strong Ni bubble effect on the diffusion time
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 683
  • Tidskriftsartikel (refereegranskat)abstract
    • We use the light-curve and spectral synthesis code JEKYLL to calculate a set of macroscopically mixed type IIb supernova (SN) models, which are compared to both previously published and new late-phase observations of SN 2020acat. The models differ in the initial mass, in the radial mixing and expansion of the radioactive material, and in the properties of the hydrogen envelope. The best match to the photospheric and nebular spectra and light curves of SN 2020acat is found for a model with an initial mass of 17 M⊙, strong radial mixing and expansion of the radioactive material, and a 0.1 M⊙ hydrogen envelope with a low hydrogen mass fraction of 0.27. The most interesting result is that strong expansion of the clumps containing radioactive material seems to be required to fit the observations of SN 2020acat both in the diffusion phase and in the nebular phase. These Ni bubbles are expected to expand due to heating from radioactive decays, but the degree of expansion is poorly constrained. Without strong expansion, there is a tension between the diffusion phase and the subsequent evolution, and models that fit the nebular phase produce a diffusion peak that is too broad. The diffusion-phase light curve is sensitive to the expansion of the Ni bubbles because the resulting Swiss-cheese-like geometry decreases the effective opacity and therefore the diffusion time. This effect has not been taken into account in previous light-curve modelling of stripped-envelope SNe, which may lead to a systematic underestimate of their ejecta masses. In addition to strong expansion, strong mixing of the radioactive material also seems to be required to fit the diffusion peak. It should be emphasized, however, that JEKYLL is limited to a geometry that is spherically symmetric on average, and large-scale asymmetries may also play a role. The relatively high initial mass found for the progenitor of SN 2020acat places it at the upper end of the mass distribution of type IIb SN progenitors, and a single-star origin cannot be excluded.
  •  
2.
  • Ergon, Mattias, 1967- (författare)
  • SN 2011dh and the progenitors of Type IIb supernovae
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Core-collapse supernovae (SNe) are the observed events following the collapse of the core of evolved massive stars. The gravitational energy released creates a powerful shock that disrupts the star and ejects the heated material into the surrounding circumstellar medium. The observed properties depend on the mass lost by the star, e.g. through stellar winds or mass transfer in binary systems, and the subject of this thesis is the class of Type IIb SNe, which are thought to have lost most, but not all of their hydrogen envelopes. A quite unique set of observations has recently been obtained for the Type IIb SN 2011dh, which was followed to more than a thousand days after the explosion, and observed by several groups at a wide range of wavelengths. In this work, the bulk portion of the ultraviolet to mid-infrared observations, as well as pre-explosion images of the progenitor star, are presented, discussed, and analysed. Lightcurve and spectral modelling of the SN observations, presented in this and related works, all suggest a progenitor of modest initial mass (<15 solar masses) with an extended and low-mass hydrogen envelope, consistent with what is found from the pre-explosion observations. Although mass-loss rates for single stars are uncertain, they are likely too weak to expel the hydrogen envelope for stars in this mass range. Therefore, an appealing alternative is mass-loss by Roche-lobe overflow in a binary system, as was likely the case for the Type IIb SN 1993J. Post-explosion observations have revealed a blue compact companion star blended with the fading SN 1993J, and a similar result has been claimed for SN 2011dh. The fact that some SNe arise from binary systems is not surprising given the large binary fraction observed for massive stars, and in this work, a grid of hydrodynamical SN models is used to infer modest initial masses (<15 solar masses) for most Type IIb SNe documented in the literature, suggesting that binary systems actually dominate the production of Type IIb SNe.
  •  
3.
  • Ergon, Mattias, 1967-, et al. (författare)
  • Spectral modelling of Type IIb supernovae Comparison with SN 2011dh and the effect of macroscopic mixing
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • We use the new non-local-thermodynamical-equilibrium (NLTE) light curve and spectral synthesis code JEKYLL to evolve a macro-scopically mixed ejecta model of a Type IIb supernova (SN) originating from a star with an initial mass of 12 M⊙ through the photospheric and nebular phase. The ejecta model is adopted from earlier work and has a mass of 1.7 M⊙, has a kinetic energy of 0.7 foe, and contains 0.075 M⊙ of 56Ni. The macroscopic mixing is simulated through a statistical representation of ejecta fragmented into small clumps but spherically symmetric on average. We compare our model with SN 2011dh and find that both the spectra and the light curves are well reproduced in both the photospheric and nebular phase, although there are also some differences. Our work further strengthens the evidence that this SN originated from a star with an initial mass of ~12 M⊙ that had lost all but a tiny (<0.1 M⊙) fraction of its hydrogen envelope, strongly suggesting a binary origin. We also investigate the effects of the macroscopic mixing by comparing macroscopically and microscopically mixed models and by varying the clumping geometry. In the photospheric phase, we find strong effects on the effective opacity in the macroscopically mixed regions, which affects the model light curves. The diffusion peak is considerably narrower (rise time decreased by 11%) in the macroscopically mixed case and differs strongly (rise time decreased by 29%) if the radioactive material in the helium envelope is allowed to expand more than in our standard model. The effect is mainly geometrical and is driven by the expansion of the clumps that contain radioactive material, which tend to decrease the effective opacity. In the limit of optically thick clumps, the decrease is roughly given by the product of the (volume) expansion and filling factors for the radioactive material, and in our models values up to ~8 are explored. These findings have implications for light curve modelling of stripped-envelope SNe in general, and the effect would increase the estimated ejecta masses. In the nebular phase, we find strong effects on the collisional cooling rates in the macroscopically mixed regions, which affects lines driven by collisional cooling, in particular the [Ca II] 7291, 7323 Å and [O I] 6300, 6364 Å lines. The effect is mainly related to differences in composition between macroscopically and microscopically mixed ejecta. As these lines are often used for mass determinations, this highlights the importance of how and to what extent the calcium- and oxygen-rich material is mixed. As shown in this and earlier work, both NLTE and macroscopic mixing are essential ingredients for accurately modelling the light curves and spectra of Type IIb SNe throughout their evolution.
  •  
4.
  • Kankare, E., et al. (författare)
  • SN 2009kn-the twin of the Type IIn supernova 1994W
  • 2012
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 424:2, s. 855-873
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an optical and near-infrared photometric and spectroscopic study of supernova (SN) 2009kn spanning similar to 1.5 yr from the discovery. The optical spectra are dominated by the narrow (full width at half-maximum similar to 1000 km s-1) Balmer lines distinctive of a Type IIn SN with P Cygni profiles. Contrarily, the photometric evolution resembles more that of a Type IIP SN with a large drop in luminosity at the end of the plateau phase. These characteristics are similar to those of SN 1994W, whose nature has been explained with two different models with different approaches. The well-sampled data set on SN 2009kn offers the possibility to test these models, in the case of both SN 2009kn and SN 1994W. We associate the narrow P Cygni lines with a swept-up shell composed of circumstellar matter and SN ejecta. The broad emission line wings, seen during the plateau phase, arise from internal electron scattering in this shell. The slope of the light curve after the post-plateau drop is fairly consistent with that expected from the radioactive decay of 56Co, suggesting an SN origin for SN 2009kn. Assuming radioactivity to be the main source powering the light curve of SN 2009kn in the tail phase, we infer an upper limit for 56Ni mass of 0.023 M?. This is significantly higher than that estimated for SN 1994W, which also showed a much steeper decline of the light curve after the post-plateau drop. We also observe late-time near-infrared emission which most likely arises from newly formed dust produced by SN 2009kn. As with SN 1994W, no broad lines are observed in the spectra of SN 2009kn, not even in the late-time tail phase.
  •  
5.
  • Medler, K., et al. (författare)
  • SN 2020acat : an energetic fast rising Type IIb supernova
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 513:4, s. 5540-5558
  • Tidskriftsartikel (refereegranskat)abstract
    • The ultraviolet (UV) and near-infrared (NIR) photometric and optical spectroscopic observations of SN 2020acat covering ∼250 d after explosion are presented here. Using the fast rising photometric observations, spanning from the UV to NIR wavelengths, a pseudo-bolometric light curve was constructed and compared to several other well-observed Type IIb supernovae (SNe IIb). SN 2020acat displayed a very short rise time reaching a peak luminosity of Log10(L)=42.49±0.17ergs−1 in only ∼14.6 ± 0.3 d. From modelling of the pseudo-bolometric light curve, we estimated a total mass of 56Ni synthesized by SN 2020acat of MNi = 0.13 ± 0.03 M⊙, with an ejecta mass of Mej = 2.3 ± 0.4 M⊙ and a kinetic energy of Ek = 1.2 ± 0.3 × 1051 erg. The optical spectra of SN 2020acat display hydrogen signatures well into the transitional period (≳ 100 d), between the photospheric and the nebular phases. The spectra also display a strong feature around 4900  Å that cannot be solely accounted for by the presence of the Fe II 5018 line. We suggest that the Fe II feature was augmented by He I 5016 and possibly by the presence of N II 5005. From both photometric and spectroscopic analysis, we inferred that the progenitor of SN 2020acat was an intermediate-mass compact star with an MZAMS of 15–20 M⊙.
  •  
6.
  • Sandin, Christer, et al. (författare)
  • Three-component modelling of O-rich AGB star winds : I. Effects of drift using forsterite
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 677
  • Tidskriftsartikel (refereegranskat)abstract
    • Stellar winds of cool and pulsating asymptotic giant branch (AGB) stars enrich the interstellar medium with large amounts of processed elements and various types of dust. We present the first study on the influence of gas-to-dust drift on ab initio simulations of stellar winds of M-type stars driven by radiation pressure on forsterite particles. Our study is based on our radiation hydrodynamic model code T-800 that includes frequency-dependent radiative transfer, dust extinction based on Mie scattering, grain growth and ablation, gas-to-dust drift using one mean grain size, a piston that simulates stellar pulsations, and an accurate high spatial resolution numerical scheme. To enable this study, we calculated new gas opacities based on the EXOMOL database, and we extended the model code to handle the formation of minerals that may form in M-type stars. We determine the effects of drift by comparing drift models to our new and extant non-drift models. Three out of four new drift models show high drift velocities, 87- 310 km s-1. Our new drift model mass-loss rates are 1.7- 13 per cent of the corresponding values of our non-drift models, but compared to the results of two extant non-drift models that use the same stellar parameters, these same values are 0.33- 1.5 per cent. Meanwhile, a comparison of other properties such as the expansion velocity and grain size show similar values. Our results, which are based on single-component forsterite particles, show that the inclusion of gas-to-drift is of fundamental importance in stellar wind models driven by such transparent grains. Assuming that the drift velocity is insignificant, properties such as the mass-loss rate may be off from more realistic values by a factor of 50 or more.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy