SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ergun Robert) "

Sökning: WFRF:(Ergun Robert)

  • Resultat 1-10 av 33
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Li-Jen, et al. (författare)
  • Electron energization and mixing observed by MMS in the vicinity of an electron diffusion region during magnetopause reconnection
  • 2016
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 43:12, s. 6036-6043
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements from the Magnetospheric Multiscale (MMS) mission are reported to show distinct features of electron energization and mixing in the diffusion region of the terrestrial magnetopause reconnection. At the ion jet and magnetic field reversals, distribution functions exhibiting signatures of accelerated meandering electrons are observed at an electron out-of-plane flow peak. The meandering signatures manifested as triangular and crescent structures are established features of the electron diffusion region (EDR). Effects of meandering electrons on the electric field normal to the reconnection layer are detected. Parallel acceleration and mixing of the inflowing electrons with exhaust electrons shape the exhaust flow pattern. In the EDR vicinity, the measured distribution functions indicate that locally, the electron energization and mixing physics is captured by two-dimensional reconnection, yet to account for the simultaneous four-point measurements, translational invariant in the third dimension must be violated on the ion-skin-depth scale.
  •  
2.
  • Giagkiozis, Stefanos, et al. (författare)
  • Statistical Study of the Properties of Magnetosheath Lion Roars
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 123:7, s. 5435-5451
  • Tidskriftsartikel (refereegranskat)abstract
    • Lion roars are narrowband whistler wave emissions that have been observed in several environments, such as planetary magnetosheaths, the Earth's magnetosphere, the solar wind, downstream of interplanetary shocks, and the cusp region. We present measurements of more than 30,000 such emissions observed by the Magnetospheric Multiscale spacecraft with high-cadence (8,192 samples/s) search coil magnetometer data. A semiautomatic algorithm was used to identify the emissions, and an adaptive interval algorithm in conjunction with minimum variance analysis was used to determine their wave vector. The properties of the waves are determined in both the spacecraft and plasma rest frame. The mean wave normal angle, with respect to the background magnetic field (B-0), plasma bulk flow velocity (V-b), and the coplanarity plane (V-b x B-0) are 23 degrees, 56 degrees, and 0 degrees, respectively. The average peak frequencies were similar to 31% of the electron gyrofrequency (omega(ce)) observed in the spacecraft frame and similar to 18% of omega(ce) in the plasma rest frame. In the spacecraft frame, similar to 99% of the emissions had a frequency < omega(ce), while 98% had a peak frequency < 0.72 omega(ce) in the plasma rest frame. None of the waves had frequencies lower than the lower hybrid frequency, omega. From the probability density function of the electron plasma beta(e), the ratio between the electron thermal and magnetic pressure, similar to 99.6% of the waves were observed with beta(e) < 4 with a large narrow peak at 0.07 and two smaller, but wider, peaks at 1.26 and 2.28, while the average value was similar to 1.25.
  •  
3.
  • Gingell, Imogen, et al. (författare)
  • MMS Observations and Hybrid Simulations of Surface Ripples at a Marginally Quasi-Parallel Shock
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:11, s. 11003-11017
  • Tidskriftsartikel (refereegranskat)abstract
    • Simulations and observations of collisionless shocks have shown that deviations of the nominal local shock normal orientation, that is, surface waves or ripples, are expected to propagate in the ramp and overshoot of quasi-perpendicular shocks. Here we identify signatures of a surface ripple propagating during a crossing of Earth's marginally quasi-parallel (theta(Bn) similar to 45 degrees) or quasi-parallel bow shock on 27 November 2015 06: 01: 44 UTC by the Magnetospheric Multiscale (MMS) mission and determine the ripple's properties using multispacecraft methods. Using two-dimensional hybrid simulations, we confirm that surface ripples are a feature of marginally quasi-parallel and quasi-parallel shocks under the observed solar wind conditions. In addition, since these marginally quasi-parallel and quasi-parallel shocks are expected to undergo a cyclic reformation of the shock front, we discuss the impact of multiple sources of nonstationarity on shock structure. Importantly, ripples are shown to be transient phenomena, developing faster than an ion gyroperiod and only during the period of the reformation cycle when a newly developed shock ramp is unaffected by turbulence in the foot. We conclude that the change in properties of the ripple observed by MMS is consistent with the reformation of the shock front over a time scale of an ion gyroperiod.
  •  
4.
  • Goodrich, Katherine A., et al. (författare)
  • MMS Multipoint electric field observations of small-scale magnetic holes
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:12, s. 5953-5959
  • Tidskriftsartikel (refereegranskat)abstract
    • Small-scale magnetic holes (MHs), local depletions in magnetic field strength, have been observed multiple times in the Earth's magnetosphere in the bursty bulk flow (BBF) braking region. This particular subset of MHs has observed scale sizes perpendicular to the background magnetic field (B) less than the ambient ion Larmor radius (rho(i)). Previous observations by Time History of Events and Macroscale Interactions during Substorms (THEMIS) indicate that this subset of MHs can be supported by a current driven by the E x B drift of electrons. Ions do not participate in the E x B drift due to the small-scale size of the electric field. While in the BBF braking region, during its commissioning phase, the Magnetospheric Multiscale (MMS) spacecraft observed a small-scale MH. The electric field observations taken during this event suggest the presence of electron currents perpendicular to the magnetic field. These observations also suggest that these currents can evolve to smaller spatial scales.
  •  
5.
  • Goodrich, Katherine A., et al. (författare)
  • MMS Observations of Electrostatic Waves in an Oblique Shock Crossing
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 123:11, s. 9430-9442
  • Tidskriftsartikel (refereegranskat)abstract
    • High-resolution particle and wave measurements taken during an oblique bow shock crossing by the Magnetospheric Multiscale (MMS) mission are analyzed. Two regions of differing magnetic behavior are identified within the shock, one with active magnetic fluctuations and one with laminar interplanetary magnetic field topology. A prominent reflected ion population is observed in both regions. The active magnetic region is characterized by large-amplitude (>100 mV/m) electrostatic solitary waves, electron Bernstein waves, and ion acoustic waves, along with intermittent current activity and localized electron heating. In the region of laminar magnetic field, ion acoustic waves are prominently observed. Solar wind ion deceleration is observed in both regions of active and laminar magnetic field. All observations suggest that solar wind deceleration can occur as a result of multiple independent processes, in this case current and ion-ion instabilities.
  •  
6.
  • Lee, Justin H., et al. (författare)
  • Application of Cold and Hot Plasma Composition Measurements to Investigate Impacts on Dusk-Side Electromagnetic Ion Cyclotron Waves
  • 2021
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 126:1
  • Tidskriftsartikel (refereegranskat)abstract
    • An extended interval of perturbed magnetospheric conditions in November 2016 supported increased convection and sunward transport of plasmaspheric material. During this period of time the Magnetospheric Multiscale satellites, with their apogees along Earth's dusk-side outer magnetosphere, encountered several cold plasma density structures at the same time as plasma bulk flows capable of accelerating hidden cold plasma occurred. Investigating the charged particle and fields data during two subintervals showed that the satellites made direct measurements of cold plasmaspheric ions embedded within multicomponent hot plasmas as well as electromagnetic emissions consistent with electromagnetic ion cyclotron (EMIC) waves. The complex in situ ion composition measurements were applied to linear wave modeling to interpret the impacts of cold and hot ion species on wave growth and band structure. Although the waves for both intervals were predicted to have peak growth rate below omega(He+), substantial differences were observed among all other dispersive properties. The modeling also showed EMIC waves generated in the presence of heavy ions had growth rates and unstable wave numbers always smaller than predicted for a pure proton-electron plasma. The results provide implications for future investigation of EMIC wave generation with and without direct measurements of the cold and hot plasma composition as well as of subsequent wave-particle interactions.
  •  
7.
  • Lee, Justin H., et al. (författare)
  • MMS Measurements and Modeling of Peculiar Electromagnetic Ion Cyclotron Waves
  • 2019
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007.
  • Tidskriftsartikel (refereegranskat)abstract
    • Orbiting Earth's dayside outer magnetosphere on 29 September 2015, the Magnetospheric Multiscale (MMS) satellites measured plasma composition, simultaneous electromagnetic ion cyclotron waves, and intermittent fast plasma flows consistent with ultralow frequency waves or convection. Such flows can accelerate typically unobservable low-energy plasma into a measurable energy range of spacecraft plasma instrumentation. We exploit the flow occurrence to ensure measurement of cold ion species alongside the hot particles-consisting of ionospheric heavy ions and solar wind He++-during a subinterval of wave emissions with spectral properties previously described as peculiar. Through application of the composition and multisatellite wave vector data to linear theory, we demonstrate the emissions are in fact consistent with theory, growing naturally in the He++ band with sufficient free energy.
  •  
8.
  • Nakamura, Rumi, et al. (författare)
  • Multiscale Currents Observed by MMS in the Flow Braking Region
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 123:2, s. 1260-1278
  • Tidskriftsartikel (refereegranskat)abstract
    • We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction. Field-aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin field-aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the field-aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold ExB drifting ions, and magnetized electrons. Our observations show that both the near-Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed field-aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the field-aligned currents in the off-equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm field-aligned current system.
  •  
9.
  • Nakamura, Rumi, et al. (författare)
  • Near-Earth plasma sheet boundary dynamics during substorm dipolarization
  • 2017
  • Ingår i: Earth Planets and Space. - : Springer Berlin/Heidelberg. - 1343-8832 .- 1880-5981. ; 69
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the large-scale evolution of dipolarization in the near-Earth plasma sheet during an intense (AL similar to -1000 nT) substorm on August 10, 2016, when multiple spacecraft at radial distances between 4 and 15 RE were present in the night-side magnetosphere. This global dipolarization consisted of multiple short-timescale (a couple of minutes) Bz disturbances detected by spacecraft distributed over 9 MLT, consistent with the large-scale substorm current wedge observed by ground-based magnetometers. The four spacecraft of the Magnetospheric Multiscale were located in the southern hemisphere plasma sheet and observed fast flow disturbances associated with this dipolarization. The high-time-resolution measurements from MMS enable us to detect the rapid motion of the field structures and flow disturbances separately. A distinct pattern of the flow and field disturbance near the plasma boundaries was found. We suggest that a vortex motion created around the localized flows resulted in another fieldaligned current system at the off-equatorial side of the BBF-associated R1/R2 systems, as was predicted by the MHD simulation of a localized reconnection jet. The observations by GOES and Geotail, which were located in the opposite hemisphere and local time, support this view. We demonstrate that the processes of both Earthward flow braking and of accumulated magnetic flux evolving tailward also control the dynamics in the boundary region of the near-Earth plasma sheet.
  •  
10.
  • Nakamura, Rumi, et al. (författare)
  • Structure of the Current Sheet in the 11 July 2017 Electron Diffusion Region Event
  • 2019
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 124:2, s. 1173-1186
  • Tidskriftsartikel (refereegranskat)abstract
    • The structure of the current sheet along the Magnetospheric Multiscale (MMS) orbit is examined during the 11 July 2017 Electron Diffusion Region (EDR) event. The location of MMS relative to the X-line is deduced and used to obtain the spatial changes in the electron parameters. The electron velocity gradient values are used to estimate the reconnection electric field sustained by nongyrotropic pressure. It is shown that the observations are consistent with theoretical expectations for an inner EDR in 2-D reconnection. That is, the magnetic field gradient scale, where the electric field due to electron nongyrotropic pressure dominates, is comparable to the gyroscale of the thermal electrons at the edge of the inner EDR. Our approximation of the MMS observations using a steady state, quasi-2-D, tailward retreating X-line was valid only for about 1.4 s. This suggests that the inner EDR is localized; that is, electron outflow jet braking takes place within an ion inertia scale from the X-line. The existence of multiple events or current sheet processes outside the EDR may play an important role in the geometry of reconnection in the near-Earth magnetotail. Plain Language Summary Magnetic reconnection is the process by which magnetic field lines coming from one region are broken and reconnected with magnetic field lines coming from another region. The simplest descriptions of magnetic reconnection are two dimensional, and a number of theoretical predictions have been made using the two-dimensional assumption. We study a magnetic reconnection event observed by the Magnetospheric Multiscale spacecraft on 11 July 2017 and find approximate agreement between the observations and the predictions of a two-dimensional model. The agreement includes the scale size of the reconnection region, details of the particle orbits, and the rate of reconnection.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 33

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy