SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Eriksson B. Klemens) "

Sökning: WFRF:(Eriksson B. Klemens)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Engel, Friederike G., et al. (författare)
  • Mussel beds are biological power stations on intertidal flats
  • 2017
  • Ingår i: Estuarine, Coastal and Shelf Science. - : Elsevier BV. - 0272-7714 .- 1096-0015. ; 191, s. 21-27
  • Tidskriftsartikel (refereegranskat)abstract
    • Intertidal flats are highly productive areas that support large numbers of invertebrates, fish, and birds. Benthic diatoms are essential for the function of tidal flats. They fuel the benthic food web by forming a thin photosynthesizing compartment in the top-layer of the sediment that stretches over the vast sediment flats during low tide. However, the abundance and function of the diatom film is not homogenously distributed. Recently, we have realized the importance of bivalve reefs for structuring intertidal ecosystems; by creating structures on the intertidal flats they provide habitat, reduce hydrodynamic stress and modify the surrounding sediment conditions, which promote the abundance of associated organisms. Accordingly, field studies show that high chlorophyll a concentration in the sediment co-vary with the presence of mussel beds. Here we present conclusive evidence by a manipulative experiment that mussels increase the local biomass of benthic microalgae; and relate this to increasing biomass of microalgae as well as productivity of the biofilm across a nearby mussel bed. Our results show that the ecosystem engineering properties of mussel beds transform them into hot spots for primary production on tidal flats, highlighting the importance of biological control of sedimentary systems.
  •  
2.
  •  
3.
  • Olin, Agnes B., et al. (författare)
  • Increases of opportunistic species in response to ecosystem change : the case of the Baltic Sea three-spined stickleback
  • 2022
  • Ingår i: ICES Journal of Marine Science. - : Oxford University Press (OUP). - 1054-3139 .- 1095-9289. ; 79:5, s. 1419-1434
  • Forskningsöversikt (refereegranskat)abstract
    • Under rapid environmental change, opportunistic species may exhibit dramatic increases in response to the altered conditions, and can in turn have large impacts on the ecosystem. One such species is the three-spined stickleback (Gasterosteus aculeatus), which has shown substantial increases in several aquatic systems in recent decades. Here, we review the population development of the stickleback in the Baltic Sea, a large brackish water ecosystem subject to rapid environmental change. Current evidence points to predatory release being the central driver of the population increases observed in some areas, while both eutrophication and climate change have likely contributed to creating more favourable conditions for the stickleback. The increasing stickleback densities have had profound effects on coastal ecosystem function by impairing the recruitment of piscivorous fish and enhancing the effects of eutrophication through promoting the production of filamentous algae. The increase poses a challenge for both environmental management and fisheries, where a substantial interest from the pelagic fisheries fleet in exploiting the species calls for urgent attention. While significant knowledge gaps remain, we suggest that the case of the Baltic Sea stickleback increase provides generalisable lessons of value for understanding and managing other coastal ecosystems under rapid change. 
  •  
4.
  • Olin, Agnes B., et al. (författare)
  • Predation and spatial connectivity interact to shape ecosystem resilience to an ongoing regime shift
  • 2024
  • Ingår i: Nature Communications. - 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecosystem regime shifts can have severe ecological and economic consequences, making it a top priority to understand how to make systems more resilient. Theory predicts that spatial connectivity and the local environment interact to shape resilience, but empirical studies are scarce. Here, we use >7000 fish samplings from the Baltic Sea coast to test this prediction in an ongoing, spatially propagating shift in dominance from predatory fish to an opportunistic mesopredator, with cascading effects throughout the food web. After controlling for the influence of other drivers (including increasing mesopredator densities), we find that predatory fish habitat connectivity increases resilience to the shift, but only when densities of fish-eating top predators (seals, cormorants) are low. Resilience also increases with temperature, likely through boosted predatory fish growth and recruitment. These findings confirm theoretical predictions that spatial connectivity and the local environment can together shape resilience to regime shifts.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy