SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Eriksson Leif A. 1964 ) "

Sökning: WFRF:(Eriksson Leif A. 1964 )

  • Resultat 1-10 av 112
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Almanza, A., et al. (författare)
  • Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications
  • 2019
  • Ingår i: Febs Journal. - : Wiley. - 1742-464X. ; 286:2, s. 241-278
  • Tidskriftsartikel (refereegranskat)abstract
    • The endoplasmic reticulum (ER) is a membranous intracellular organelle and the first compartment of the secretory pathway. As such, the ER contributes to the production and folding of approximately one-third of cellular proteins, and is thus inextricably linked to the maintenance of cellular homeostasis and the fine balance between health and disease. Specific ER stress signalling pathways, collectively known as the unfolded protein response (UPR), are required for maintaining ER homeostasis. The UPR is triggered when ER protein folding capacity is overwhelmed by cellular demand and the UPR initially aims to restore ER homeostasis and normal cellular functions. However, if this fails, then the UPR triggers cell death. In this review, we provide a UPR signalling-centric view of ER functions, from the ER's discovery to the latest advancements in the understanding of ER and UPR biology. Our review provides a synthesis of intracellular ER signalling revolving around proteostasis and the UPR, its impact on other organelles and cellular behaviour, its multifaceted and dynamic response to stress and its role in physiology, before finally exploring the potential exploitation of this knowledge to tackle unresolved biological questions and address unmet biomedical needs. Thus, we provide an integrated and global view of existing literature on ER signalling pathways and their use for therapeutic purposes.
  •  
2.
  • Papaioannou, A., et al. (författare)
  • Stress-induced tyrosine phosphorylation of RtcB modulates IRE1 activity and signaling outputs
  • 2022
  • Ingår i: Life science alliance. - : Life Science Alliance, LLC. - 2575-1077. ; 5:5
  • Tidskriftsartikel (refereegranskat)abstract
    • ER stress is mediated by three sensors and the most evolutionary conserved IRE1α signals through its cytosolic kinase and endoribonuclease (RNase) activities. IRE1α RNase activity can either catalyze the initial step of XBP1 mRNA unconventional splicing or degrade a number of RNAs through regulated IRE1-dependent decay. Until now, the biochemical and biological outputs of IRE1α RNase activity have been well documented; however, the precise mechanisms controlling whether IRE1α signaling is adaptive or pro-death (terminal) remain unclear. We investigated those mechanisms and hypothesized that XBP1 mRNA splicing and regulated IRE1-dependent decay activity could be co-regulated by the IRE1α RNase regulatory network. We identified that RtcB, the tRNA ligase responsible for XBP1 mRNA splicing, is tyrosine-phosphorylated by c-Abl and dephosphorylated by PTP1B. Moreover, we show that the phosphorylation of RtcB at Y306 perturbs RtcB interaction with IRE1α, thereby attenuating XBP1 mRNA splicing. Our results demonstrate that the IRE1α RNase regulatory network is dynamically fine-tuned by tyrosine kinases and phosphatases upon various stresses and that the extent of RtcB tyrosine phosphorylation determines cell adaptive or death outputs. © 2022 Papaioannou et al.
  •  
3.
  • Maurel, M., et al. (författare)
  • Control of anterior GRadient 2 (AGR2) dimerization links endoplasmic reticulum proteostasis to inflammation
  • 2019
  • Ingår i: EMBO Molecular Medicine. - : EMBO. - 1757-4676 .- 1757-4684. ; 11:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Anterior gradient 2 (AGR2) is a dimeric protein disulfide isomerase family member involved in the regulation of protein quality control in the endoplasmic reticulum (ER). Mouse AGR2 deletion increases intestinal inflammation and promotes the development of inflammatory bowel disease (IBD). Although these biological effects are well established, the underlying molecular mechanisms of AGR2 function toward inflammation remain poorly defined. Here, using a protein-protein interaction screen to identify cellular regulators of AGR2 dimerization, we unveiled specific enhancers, including TMED2, and inhibitors of AGR2 dimerization, that control AGR2 functions. We demonstrate that modulation of AGR2 dimer formation, whether enhancing or inhibiting the process, yields pro-inflammatory phenotypes, through either autophagy-dependent processes or secretion of AGR2, respectively. We also demonstrate that in IBD and specifically in Crohn's disease, the levels of AGR2 dimerization modulators are selectively deregulated, and this correlates with severity of disease. Our study demonstrates that AGR2 dimers act as sensors of ER homeostasis which are disrupted upon ER stress and promote the secretion of AGR2 monomers. The latter might represent systemic alarm signals for pro-inflammatory responses.
  •  
4.
  • Nandy, A., et al. (författare)
  • Homology model of the human tRNA splicing ligase RtcB
  • 2017
  • Ingår i: Proteins-Structure Function and Bioinformatics. - : Wiley. - 0887-3585 .- 1097-0134. ; 85:11, s. 1983-1993
  • Tidskriftsartikel (refereegranskat)abstract
    • RtcB is an essential human tRNA ligase required for ligating the 2', 3'-cyclic phosphate and 5'-hydroxyl termini of cleaved tRNA halves during tRNA splicing and XBP1 fragments during endoplasmic reticulum stress. Activation of XBP1 has been implicated in various human tumors including breast cancer. Here we present, for the first time, a homology model of human RtcB (hRtcB) in complex with manganese and covalently bound GMP built from the Pyrococcus horikoshii RtcB (bRtcB) crystal structure, PDB ID 4DWQA. The structure is analyzed in terms of stereochemical quality, folding reliability, secondary structure similarity with bRtcB, druggability of the active site binding pocket and its metal-binding microenvironment. In comparison with bRtcB, loss of a manganese-coordinating water and movement of Asn226 (Asn202 in 4DWQA) to form metal-ligand coordination, demonstrates the uniqueness of the hRtcB model. Rotation of GMP leads to the formation of an additional metal-ligand coordination (Mn-O). Umbrella sampling simulations of Mn binding in wild type and the catalytically inactive C122A mutant reveal a clear reduction of Mn binding ability in the mutant, thus explaining the loss of activity therein. Our results furthermore clearly show that the GTP binding site of the enzyme is a well-defined pocket that can be utilized as target site for in silico drug discovery.
  •  
5.
  •  
6.
  • Carlesso, Antonio, 1990, et al. (författare)
  • Effect of Kinase Inhibiting RNase Attenuator (KIRA) Compounds on the Formation of Face-to-Face Dimers of Inositol-Requiring Enzyme 1: Insights from Computational Modeling
  • 2019
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1422-0067. ; 20:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Inositol-requiring enzyme 1 alpha (IRE1 alpha) is a transmembrane dual kinase/ribonuclease protein involved in propagation of the unfolded protein response (UPR). Inositol-requiring enzyme 1 alpha is currently being explored as a potential drug target due to the growing evidence of its role in variety of disease conditions. Upon activation, IRE1 cleaves X-box binding protein 1 (XBP1) mRNA through its RNase domain. Small molecules targeting the kinase site are known to either increase or decrease RNase activity, but the allosteric relationship between the kinase and RNase domains of IRE1 alpha is poorly understood. Subsets of IRE1 kinase inhibitors (known as "KIRA" compounds) bind to the ATP-binding site and allosterically impede the RNase activity. The KIRA compounds are able to regulate the RNase activity by stabilizing the monomeric form of IRE1 alpha. In the present work, computational analysis, protein-protein and protein-ligand docking studies, and molecular dynamics simulations were applied to different IRE1 dimer systems to provide structural insights into the perturbation of IRE1 dimers by small molecules kinase inhibitors that regulate the RNase activity. By analyzing structural deviations, energetic components, and the number of hydrogen bonds in the interface region, we propose that the KIRA inhibitors act at an early stage of IRE1 activation by interfering with IRE1 face-to-face dimer formation thus disabling the activation of the RNase domain. This work sheds light on the mechanism of action of KIRA compounds and may assist in development of further compounds in, for example, cancer therapeutics. The work also provides information on the sequence of events and protein-protein interactions initiating the unfolded protein response.
  •  
7.
  • Carlesso, Antonio, 1990, et al. (författare)
  • Merits and pitfalls of conventional and covalent docking in identifying new hydroxyl aryl aldehyde like compounds as human IRE1 inhibitors
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • IRE1 is an endoplasmic reticulum (ER) bound transmembrane bifunctional kinase and endoribonuclease protein crucial for the unfolded protein response (UPR) signaling pathway. Upon ER stress, IRE1 homodimerizes, oligomerizes and autophosphorylates resulting in endoribonuclease activity responsible for excision of a 26 nucleotide intron from the X-box binding protein 1 (XBP1) mRNA. This unique splicing mechanism results in activation of the XBP1s transcription factor to specifically restore ER stress. Small molecules targeting the reactive lysine residue (Lys907) in IRE1 alpha's RNase domain have been shown to inhibit the cleavage of XBP1 mRNA. Crystal structures of murine IRE1 in complex with covalently bound hydroxyl aryl aldehyde (HAA) inhibitors show that these molecules form hydrophobic interactions with His910 and Phe889, a hydrogen bond with Tyr892 and an indispensable Schiff-base with Lys907. The availability of such data prompted interest in exploring structure-based drug design as a strategy to develop new covalently binding ligands. We extensively evaluated conventional and covalent docking for drug discovery targeting the catalytic site of the RNase domain. The results indicate that neither computational approach is fully successful in the current case, and we highlight herein the potential and limitations of the methods for the design of novel IRE1 RNase binders.
  •  
8.
  • Cerezo, J., et al. (författare)
  • Antioxidant properties of beta-carotene isomers and their role in photosystems: insights from ab initio simulations
  • 2012
  • Ingår i: Journal of Physical Chemistry A. - : American Chemical Society (ACS). - 1089-5639 .- 1520-5215. ; 116:13, s. 3498-3506
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work we investigate the effect of cis isomerizations and conformational changes on the antioxidant activity of β-carotene, one of the most important pigments in nature. The electrodonating (ω−) and electroaccepting (ω+) powers of the most relevant isomers of β-carotene are first evaluated in polar and nonpolar solvents using density functional theory (DFT), and these quantities are then used to establish an antioxidant scale of the isomers. The electrodonating power, which is directly related to the antioxidant activity, is shown to provide a very good correlation with the experimental data. Next, we compute the intermediate twisted structures of the β-carotene isomers generated by partial rotation of every single bond in the polyenic chain. The electrodonating and electroaccepting powers are evaluated for each of these intermediate structures along with their maximum absorption wavelengths, which are computed using time-dependent DFT (TD-DFT). The trends observed for both the electrodonating power and the maximum absorption wavelength can be rationalized in terms of the effective conjugated chain length of the structure resulting from single bond rotations. The results obtained are used to analyze the conformational distribution of β-carotene in the well-resolved photosystem I (PS-I) of purple cyanobacteria. It is then shown that the isomers present in this photosystem are those having the lowest calculated relative energies and that those with enhanced antioxidant activity are preferentially located in the inner core of the protein complex.
  •  
9.
  • Chintha, C., et al. (författare)
  • Molecular modeling provides a structural basis for PERK inhibitor selectivity towards RIPK1
  • 2020
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 10:1, s. 367-375
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein kinases are crucial drug targets in cancer therapy. Kinase inhibitors are promiscuous in nature due to the highly conserved nature of the kinase ATP binding pockets. PERK has emerged as a potential therapeutic target in cancer. However, PERK inhibitors GSK2606414 and GSK2656157 also target RIPK1 whereas AMG44 is more specific to PERK. To understand the structural basis for the selectivity of PERK ligands to RIPK1 we have undertaken a detailed in silico analysis using molecular docking followed by molecular dynamics simulations to explore the selectivity profiles of the compounds. Although the binding sites of PERK and RIPK1 are similar, their binding response to small molecules is different. The docking models revealed a common binding mode for GSK2606414 and GSK2656157 in the RIPK1 binding site, similar to its cognate ligand. In contrast, AMG44 had a strikingly different predicted binding profile in the RIPK1 binding site with both rigid docking and induced fit docking settings. Our study shows a molecular mechanism responsible for dual targeting by the GSK ligands. More broadly, this work illustrates the potential of molecular docking to correctly predict the binding towards different kinase structures, and will aid in the design of selective PERK kinase inhibitors.
  •  
10.
  • Doultsinos, D., et al. (författare)
  • Peptidomimetic-based identification of FDA-approved compounds inhibiting IRE1 activity
  • 2021
  • Ingår i: Febs Journal. - : Wiley. - 1742-464X .- 1742-4658. ; 288:3, s. 945-960
  • Tidskriftsartikel (refereegranskat)abstract
    • Inositol-requiring enzyme 1 (IRE1) is a bifunctional serine/threonine kinase and endoribonuclease that is a major mediator of the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress. Tumour cells experience ER stress due to adverse environmental cues such as hypoxia or nutrient shortage and high metabolic/protein-folding demand. To cope with those stresses, cancer cells utilise IRE1 signalling as an adaptive mechanism. Here, we report the discovery of the FDA-approved compounds methotrexate, cefoperazone, folinic acid and fludarabine phosphate as IRE1 inhibitors. These were identified through a structural exploration of the IRE1 kinase domain using IRE1 peptide fragment docking and further optimisation and pharmacophore development. The inhibitors were verified to have an impact on IRE1 activityin vitroand were tested for their ability to sensitise human cell models of glioblastoma multiforme (GBM) to chemotherapy. We show that all molecules identified sensitise glioblastoma cells to the standard-of-care chemotherapy temozolomide (TMZ).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 112
Typ av publikation
tidskriftsartikel (102)
konferensbidrag (3)
forskningsöversikt (3)
bokkapitel (2)
annan publikation (1)
patent (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (107)
övrigt vetenskapligt/konstnärligt (4)
populärvet., debatt m.m. (1)
Författare/redaktör
Eriksson, Leif A, 19 ... (110)
Carlesso, Antonio, 1 ... (15)
Chevet, E. (14)
Saenz Mendez, Patric ... (12)
Samali, A. (11)
Mahdizadeh, Sayyed J ... (11)
visa fler...
Genheden, Samuel (9)
Olsson, Lisbeth, 196 ... (8)
Gorman, A. M. (8)
Chintha, C. (7)
Bettiga, Maurizio, 1 ... (6)
Zhang, R. B. (6)
Gao, Chunxia (5)
Lindahl, Lina, 1984 (5)
Strid, Åke, 1960- (5)
Wu, Min, 1986 (5)
Eriksson, Emma S. E. (5)
Blomberg, Anders, 19 ... (4)
Doultsinos, D. (4)
Pelizzari-Raymundo, ... (4)
Tian, B.-X. (4)
Hörberg, Johanna (4)
Avril, T. (4)
Sirsjö, Allan, 1959- (3)
Morell, C. (3)
Chevet, Eric (3)
Wang, S. D. (3)
Martin, S. (2)
Alm Rosenblad, Magnu ... (2)
Sundell, Kristina, 1 ... (2)
Ågren, Hans (2)
Grand, A. (2)
Tyrchan, C (2)
Papaioannou, A (2)
Grøtli, Morten, 1966 (2)
Gottfries, Johan, 19 ... (2)
Amarasinghe, Kosala ... (2)
An, N. (2)
Deng, W.-P. (2)
Strid, Åke, Professo ... (2)
Hedfalk, Kristina, 1 ... (2)
Mapelli, Valeria, 19 ... (2)
Awadalla, M. K. A. (2)
Billod, Jean-Marc (2)
Reymer, Anna, 1983 (2)
Tu, Yaoquan (2)
Chatziioannou, A (2)
Cadet, J (2)
Fessart, D. (2)
Pineau, R. (2)
visa färre...
Lärosäte
Göteborgs universitet (108)
Chalmers tekniska högskola (11)
Karlstads universitet (11)
Örebro universitet (9)
Karolinska Institutet (3)
Kungliga Tekniska Högskolan (2)
visa fler...
Linköpings universitet (2)
Lunds universitet (2)
Uppsala universitet (1)
Stockholms universitet (1)
Högskolan i Borås (1)
RISE (1)
visa färre...
Språk
Engelska (112)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (96)
Medicin och hälsovetenskap (28)
Teknik (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy