SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Erjefält Jonas S.) "

Sökning: WFRF:(Erjefält Jonas S.)

  • Resultat 1-10 av 39
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Ravanetti, Lara, et al. (författare)
  • IL-33 drives influenza-induced asthma exacerbations by halting innate and adaptive antiviral immunity
  • 2019
  • Ingår i: Journal of Allergy and Clinical Immunology. - : Elsevier BV. - 0091-6749. ; 143:4, s. 16-1370
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Influenza virus triggers severe asthma exacerbations for which no adequate treatment is available. It is known that IL-33 levels correlate with exacerbation severity, but its role in the immunopathogenesis of exacerbations has remained elusive. Objective: We hypothesized that IL-33 is necessary to drive asthma exacerbations. We intervened with the IL-33 cascade and sought to dissect its role, also in synergy with thymic stromal lymphopoietin (TSLP), in airway inflammation, antiviral activity, and lung function. We aimed to unveil the major source of IL-33 in the airways and IL-33–dependent mechanisms that underlie severe asthma exacerbations. Methods: Patients with mild asthma were experimentally infected with rhinovirus. Mice were chronically exposed to house dust mite extract and then infected with influenza to resemble key features of exacerbations in human subjects. Interventions included the anti–IL-33 receptor ST2, anti–TSLP, or both. Results: We identified bronchial ciliated cells and type II alveolar cells as a major local source of IL-33 during virus-driven exacerbation in human subjects and mice, respectively. By blocking ST2, we demonstrated that IL-33 and not TSLP was necessary to drive exacerbations. IL-33 enhanced airway hyperresponsiveness and airway inflammation by suppressing innate and adaptive antiviral responses and by instructing epithelial cells and dendritic cells of house dust mite–sensitized mice to dampen IFN-β expression and prevent the TH1-promoting dendritic cell phenotype. IL-33 also boosted luminal NETosis and halted cytolytic antiviral activities but did not affect the TH2 response. Conclusion: Interventions targeting the IL-33/ST2 axis could prove an effective acute short-term therapy for virus-induced asthma exacerbations.
  •  
3.
  • Ali, Mohamad N., et al. (författare)
  • Osteopontin Expression in Small Airway Epithelium in Copd is Dependent on Differentiation and Confined to Subsets of Cells
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteopontin (OPN) plays a role in inflammation via recruitment of neutrophils and tissue remodeling. In this study, we investigated the distribution of OPN-expressing cells in the airway epithelium of normal lung tissue and that from patients with chronic obstructive pulmonary disease (COPD). OPN was detected on the epithelial cell surface of small airways and in scattered cells within the epithelial cell layer. Staining revealed higher OPN concentrations in tissue showing moderate to severe COPD compared to that in controls. In addition, OPN expression was confined to goblet and club cells, and was absent from ciliated and basal cells as detected via immunohistochemistry. However, OPN expression was up-regulated in submerged basal cells cultures exposed to cigarette smoke (CS) extract. Cell fractioning of air-liquid interface cultures revealed increased OPN production from basal compartment cells compared to that in luminal fraction cells. Furthermore, both constitutive and CS-induced expression of OPN decreased during differentiation. In contrast, cultures stimulated with interleukin (IL)-13 to promote goblet cell hyperplasia showed increased OPN production in response to CS exposure. These results indicate that the cellular composition of the airway epithelium plays an important role in OPN expression and that these levels may reflect disease endotypes in COPD.
  •  
4.
  •  
5.
  • Nilsson, Johan S., et al. (författare)
  • Immune phenotypes of nasopharyngeal cancer
  • 2020
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 12:11, s. 1-17
  • Tidskriftsartikel (refereegranskat)abstract
    • Nasopharyngeal cancer (NPC) features intralesional immune cells, but data are lacking on presence/distribution of T-cells and dendritic cells (DCs). Based on intralesional distribution of lymphocytes, a series of NPC biopsies (n = 48) were classified into “inflamed”, “excluded”, and “deserted” phenotypes. In addition, CD8+ T-cells and CD207+ DCs were quantified. The data were analyzed in relation to Epstein–Barr virus-encoded small RNA (EBER), Epstein-Barr virus (EBV) DNA, and survival. Separately, data on gene expression from a public database were analyzed. 61.7% of NPC lesions were “inflamed”, 29.8% were “excluded”, and 8.5% were “deserted”. While CD8+ cells were present in cancer cell areas and in surrounding stroma, CD207+ cells were observed largely in cancer cell areas. High CD8+ T-cell presence was associated with EBV+ disease, but no such pattern was observed for CD207+ DCs. There was a difference in disease-free survival in favor of “inflamed” over “excluded” NPC. Gene expression analysis revealed differences between NPC and control tissue (e.g., with regard to interferon activity) as well as between subgroups of NPC based on CD8 expression (high vs. low). In conclusion, NPC lesions are heterogeneous with regard to distribution of CD8+ T-cells and CD207+ DCs. NPC can be classified into immune phenotypes that carry prognostic information. CD207+ DCs may represent a target for immunotherapy with potential to facilitate the antigen cross-presentation necessary to execute cytotoxic T-lymphocyte responses.
  •  
6.
  • Shikhagaie, Medya Mara, et al. (författare)
  • Neuropilin-1 Is Expressed on Lymphoid Tissue Residing LTi-like Group 3 Innate Lymphoid Cells and Associated with Ectopic Lymphoid Aggregates
  • 2017
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 18:7, s. 1761-1773
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, we characterize a subset of ILC3s that express Neuropilin1 (NRP1) and are present in lymphoid tissues, but not in the peripheral blood or skin. NRP1+ group 3 innate lymphoid cells (ILC3s) display in vitro lymphoid tissue inducer (LTi) activity. In agreement with this, NRP1+ ILC3s are mainly located in proximity to high endothelial venules (HEVs) and express cell surface molecules involved in lymphocyte migration in secondary lymphoid tissues via HEVs. NRP1 was also expressed on mouse fetal LTi cells, indicating that NRP1 is a conserved marker for LTi cells. Human NRP1+ ILC3s are primed cells because they express CD45RO and produce higher amounts of cytokines than NRP1− cells, which express CD45RA. The NRP1 ligand vascular endothelial growth factor A (VEGF-A) served as a chemotactic factor for NRP1+ ILC3s. NRP1+ ILC3s are present in lung tissues from smokers and patients with chronic obstructive pulmonary disease, suggesting a role in angiogenesis and/or the initiation of ectopic pulmonary lymphoid aggregates.
  •  
7.
  • Al-Garawi, A., et al. (författare)
  • Influenza A facilitates sensitization to house dust mite in infant mice leading to an asthma phenotype in adulthood
  • 2011
  • Ingår i: Mucosal Immunology. - : Elsevier BV. - 1933-0219. ; 4:6, s. 682-694
  • Tidskriftsartikel (refereegranskat)abstract
    • The origins of allergic asthma, particularly in infancy, remain obscure. Respiratory viral infections and allergen sensitization in early life have been associated with asthma in young children. However, a causal link has not been established. We investigated whether an influenza A infection in early life alters immune responses to house dust mite (HDM) and promotes an asthmatic phenotype later in life. Neonatal (8-day-old) mice were infected with influenza virus and 7 days later, exposed to HDM for 3 weeks. Unlike adults, neonatal mice exposed to HDM exhibited negligible immune responsiveness to HDM, but not to influenza A. HDM responsiveness in adults was associated with distinct Ly6c(+) CD11b(+) inflammatory dendritic cell and CD8 alpha(+) plasmacytoid (pDC) populations that were absent in HDM-exposed infant mice, suggesting an important role in HDM-mediated inflammation. Remarkably, HDM hyporesponsiveness was overcome when exposure occurred concurrently with an acute influenza infection; young mice now displayed robust allergen-specific immunity, allergic inflammation, and lung remodeling. Remodeling persisted into early adulthood, even after prolonged discontinuation of allergen exposure and was associated with marked impairment of lung function. Our data demonstrate that allergen exposure coincident with acute viral infection in early life subverts constitutive allergen hyporesponsiveness and imprints an asthmatic phenotype in adulthood.
  •  
8.
  • Allinne, Jeanne, et al. (författare)
  • IL-33 blockade affects mediators of persistence and exacerbation in a model of chronic airway inflammation
  • 2019
  • Ingår i: Journal of Allergy and Clinical Immunology. - : Elsevier BV. - 0091-6749. ; 144:6, s. 1624-1637
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Severe inflammatory airway diseases are associated with inflammation that does not resolve, leading to structural changes and an overall environment primed for exacerbations. Objective: We sought to identify and inhibit pathways that perpetuate this heightened inflammatory state because this could lead to therapies that allow for a more quiescent lung that is less predisposed to symptoms and exacerbations. Methods: Using prolonged exposure to house dust mite in mice, we developed a mouse model of persistent and exacerbating airway disease characterized by a mixed inflammatory phenotype. Results: We show that lung IL-33 drives inflammation and remodeling beyond the type 2 response classically associated with IL-33 signaling. IL-33 blockade with an IL-33 neutralizing antibody normalized established inflammation and improved remodeling of both the lung epithelium and lung parenchyma. Specifically, IL-33 blockade normalized persisting and exacerbating inflammatory end points, including eosinophilic, neutrophilic, and ST2+CD4+ T-cell infiltration. Importantly, we identified a key role for IL-33 in driving lung remodeling because anti–IL-33 also re-established the presence of ciliated cells over mucus-producing cells and decreased myofibroblast numbers, even in the context of continuous allergen exposure, resulting in improved lung function. Conclusion: Overall, this study shows that increased IL-33 levels drive a self-perpetuating amplification loop that maintains the lung in a state of lasting inflammation and remodeled tissue primed for exacerbations. Thus IL-33 blockade might ameliorate symptoms and prevent exacerbations by quelling persistent inflammation and airway remodeling.
  •  
9.
  • Andersson, Cecilia K, et al. (författare)
  • Distal respiratory tract viral infections in young children trigger a marked increase in alveolar mast cells
  • 2018
  • Ingår i: ERJ Open Research. - : European Respiratory Society (ERS). - 2312-0541. ; 4:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Viral infections predispose to the development of childhood asthma, a disease associated with increased lung mast cells (MCs). This study investigated whether viral lower respiratory tract infections (LRTIs) can already evoke a MC response during childhood. Lung tissue from young children who died following LRTIs were processed for immunohistochemical identification of MCs. Children who died from nonrespiratory causes served as controls. MCs were examined in relation to sensitisation in infant mice exposed to allergen during influenza A infection. Increased numbers of MCs were observed in the alveolar parenchyma of children infected with LRTIs (median (range) 12.5 (0-78) MCs per mm2) compared to controls (0.63 (0-4) MCs per mm2, p=0.0005). The alveolar MC expansion was associated with a higher proportion of CD34+ tryptase+ progenitors (controls: 0% (0-1%); LRTIs: 0.9% (0-3%) CD34+ MCs (p=0.01)) and an increased expression of the vascular cell adhesion molecule (VCAM)-1 (controls: 0.2 (0.07-0.3); LRTIs: 0.3 (0.02-2) VCAM-1 per mm2 (p=0.04)). Similarly, infant mice infected with H1N1 alone or together with house dust mite (HDM) developed an increase in alveolar MCs (saline: 0.4 (0.3-0.5); HDM: 0.6 (0.4-0.9); H1N1: 1.4 (0.4-2.0); HDM+H1N1: 2.2 (1.2-4.4) MCs per mm2 (p<0.0001)). Alveolar MCs continued to increase and remained significantly higher into adulthood when exposed to H1N1+HDM (day 36: 2.2 (1.2-4.4); day 57: 4.6 (1.6-15) MCs per mm2 (p=0.01)) but not when infected with H1N1 alone. Our data demonstrate that distal viral infections in young children evoke a rapid accumulation of alveolar MCs. Apart from revealing a novel immune response to distal infections, our data may have important implications for the link between viral infections during early childhood and subsequent asthma development.
  •  
10.
  • Backer, Vibeke, et al. (författare)
  • Clinical characteristics of the BREATHE cohort–a real-life study on patients with asthma and COPD
  • 2020
  • Ingår i: European clinical respiratory journal. - : Informa UK Limited. - 2001-8525. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The BREATHE study is a cross-sectional study of real-life patients with asthma and/or COPD in Denmark and Sweden aiming to increase the knowledge across severities and combinations of obstructive airway disease. Design: Patients with suspicion of asthma and/or COPD and healthy controls were invited to participate in the study and had a standard evaluation performed consisting of questionnaires, physical examination, FeNO and lung function, mannitol provocation test, allergy test, and collection of sputum and blood samples. A subgroup of patients and healthy controls had a bronchoscopy performed with a collection of airway samples. Results: The study population consisted of 1403 patients with obstructive airway disease (859 with asthma, 271 with COPD, 126 with concurrent asthma and COPD, 147 with other), and 89 healthy controls (smokers and non-smokers). Of patients with asthma, 54% had moderate-to-severe disease and 46% had mild disease. In patients with COPD, 82% had groups A and B, whereas 18% had groups C and D classified disease. Patients with asthma more frequently had childhood asthma, atopic dermatitis, and allergic rhinitis, compared to patients with COPD, asthma + COPD and Other, whereas FeNO levels were higher in patients with asthma and asthma + COPD compared to COPD and Other (18 ppb and 16 ppb vs 12.5 ppb and 14 ppb, p < 0.001). Patients with asthma, asthma + COPD and Other had higher sputum eosinophilia (1.5%, 1.5%, 1.2% vs 0.75%, respectively, p < 0.001) but lower sputum neutrophilia (39.3, 43.5%, 40.8% vs 66.8%, p < 0.001) compared to patients with COPD. Conclusions: The BREATHE study provides a unique database and biobank with clinical information and samples from 1403 real-life patients with asthma, COPD, and overlap representing different severities of the diseases. This research platform is highly relevant for disease phenotype- and biomarker studies aiming to describe a broad spectrum of obstructive airway diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 39

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy