SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Errandonea Daniel) "

Sökning: WFRF:(Errandonea Daniel)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Botella, Pablo, PhD Student, et al. (författare)
  • High-pressure characterization of multifunctional CrVO4
  • 2020
  • Ingår i: Journal of Physics. - : Institute of Physics (IOP). - 0953-8984 .- 1361-648X. ; 32:38
  • Tidskriftsartikel (refereegranskat)abstract
    • The structural stability and physical properties of CrVO4 under compression were studied by X-ray diffraction, Raman spectroscopy, optical absorption, resistivity measurements, and ab initio calculations up to 10 GPa. High-pressure X-ray diffraction and Raman measurements show that CrVO4 undergoes a phase transition from the ambient pressure orthorhombic CrVO4-type structure (Cmcm space group, phase III) to the high-pressure monoclinic CrVO4-V phase, which is isomorphic to the wolframite structure. Such a phase transition (CrVO4-type → wolframite), driven by pressure, also was previously observed in indium vanadate. The crystal structure of both phases and the pressure dependence in unit-cell parameters, Raman-active modes, resistivity, and electronic band gap, is reported.  Vanadium atoms are sixth-fold coordinated in the wolframite phase, which is related to the collapse in the volume at the phase transition. Besides, we also observed drastic changes in the phonon spectrum, a drop of the band-gap, and a sharp decrease of resistivity. All the observed phenomena are explained with the help of first-principles calculations.
  •  
2.
  • Botella, Pablo, et al. (författare)
  • Investigation on the Luminescence Properties of InMO4 (M = V5+, Nb5+, Ta5+) Crystals Doped with Tb3+ or Yb3+ Rare Earth Ions
  • 2020
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 5:5, s. 2148-2158
  • Tidskriftsartikel (refereegranskat)abstract
    • We explore the potential of Tb- and Yb-doped InVO4, InTaO4, and InNbO4 for applications as phosphors for light-emitting sources. Doping below 0.2% barely change the crystal structure and Raman spectrum but provide optical excitation and emission properties in the visible and near-infrared (NIR) spectral regions. From optical measurements, the energy of the first/second direct band gaps was determined to be 3.7/4.1 eV in InVO4, 4.7/5.3 in InNbO4, and 5.6/6.1 eV in InTaO4. In the last two cases, these band gaps are larger than the fundamental band gap (being indirect gap materials), while for InVO4, a direct band gap semiconductor, the fundamental band gap is at 3.7 eV. As a consequence, this material shows a strong self-activated photoluminescence centered at 2.2 eV. The other two materials have a weak self-activated signal at 2.2 and 2.9 eV. We provide an explanation for the origin of these signals taking into account the analysis of the polyhedral coordination around the pentavalent cations (V, Nb, and Ta). Finally, the characteristic green (5D4 → 7FJ) and NIR (2F5/2 → 2F7/2) emissions of Tb3+ and Yb3+ have been analyzed and explained.
  •  
3.
  • Botella, Pablo, PhD Student, 1988- (författare)
  • Physical Properties of Ternary Metal Oxides and Carbon Nanomaterials Under Pressure
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Found in nature or synthesized, materials present amazing properties such as superconductivity, super-hardness, lightweight, or high-energy-density, among others. All these properties can be used in our benefit to improve or develop new applications. Although, many of these properties are not noticeable in the ambient conditions of pressure and temperature. Therefore, only when the materials are exposed to extreme conditions of temperature, pressure, radiation, etc., become notable. For those reasons, it is fundamental to understand their properties and how they are affected by different parameters such as the synthesis process, morphology, doping or external parameters (e.g. pressure, temperature).High-pressure studies have been shown to be an excellent tool for proving and study the robustness of material properties as well as for the synthesis of new materials. Changes as extreme and spectacular as converting oxygen gas into a superconducting metal or the well-known graphite to diamond conversion among others have been made under high-pressure conditions.Among all the materials, and due to their interesting properties, in this doctoral thesis we have studied four ternary metal oxide semiconductors (InVO4, CrVO4, InNbO4 and InTaO4) and carbon nanostructure materials (single-walled carbon nanotubes (SWCNTs)) at ambient conditions as well as under high-pressure (static or dynamic compression) using different characterization techniques such as X-ray diffraction (XRD), Raman spectroscopy (RS), optical absorption, transmission electron microscopy (TEM), photoluminescence (PL) and electrical measurements.InVO4, InNbO4 and InTaO4 are wide metal oxide semiconductors having band-gap energy of 3.62(5), 3.63(5) and 3.79(5) eV, respectively, being InVO4 a direct band-gap semiconductor and, InNbO4 and InTaO4 indirect band-gap semiconductors. These compounds undergo, under pressure, to a structural phase transition from orthorhombic, in the case of InVO4, or monoclinic, in the case of InNbO4 and InTaO4, to another monoclinic system. This structural phase transition triggers interesting phenomena due to the modification of the electronic band structure of the compounds. Phenomena observed under compression include bandgap collapse about 1-1.5 eV depending on the compound, band crossing due to the change to the local maximum on top of the valence band and colour change. Also, the electrical resistivity of the materials is affected by this change in the band structure. All these results are discussed based on our theoretical band structure calculations.On the other hand, doping these compounds below 0.2% using Tb or Yb rare-earth elements, the crystal structure is barely affected as well as their phonon structure, but the band structure does, giving rise optical excitation and emission properties in the visible and near-infrared (NIR) spectral region. From optical reflectivity measurements, the two first direct transitions are reported at 3.7/4.2 eV in InVO4, 4.7/5.3 eV in InNbO4 and 5.6/6.1 eV in InTaO4. All the compounds present self-activated photoemission signals which are discussed in terms of the distorted polyhedral coordination around V, Nb and Ta atoms. Finally, the characteristic emission of Tb atoms in the green region (5D4→7FJ) and the Yb atoms in the NIR region (2F5/2→2F7/2) are analysed and discussed based on our theoretical calculations.Even though, being a prototype structure of a family of compounds denoted as CrVO4-type materials, there is still scarce information on the behaviour under pressure of the CrVO4 compound. Here, it is also studied CrVO4 having an orthorhombic structure under pressure up to 10 GPa. Crystal structure, phonon band structure, optical and electrical properties are analysed showing a structural phase transition similar to that in InVO4 with an increase in the vanadium atoms coordination from 4 to 6. This phase transition triggers also a band-gap collapse of 1.1 eV, a change in the phonon structure and a sharp decrease in the resistivity of the material. All these results are discussed in terms of our theoretical calculations and comparison with its isostructural partner InVO4.To conclude, we study the effects of the dynamic pressure of 0.5 Mbar (50 GPa) on SWCNTs which is way beyond the limit of their structural stability in quest of new forms of carbon nanostructures. Thus, no nanotubes survived to this pressure. The recovered material is composed of two types of material which are classified in a multi-layer graphene phase (MLG) with high defect concentration and multi-phase material which dominates the sample. Even the reached conditions during the shock-compression were favourable for the diamond formation, we were unable to find traces of diamond-like carbon in the very inhomogeneous sample. The crystal size of both materials has been estimated at 13 nm for disordered carbon and 30 nm for MLG phase. The dispersion of the Raman modes was also studied using several lasers and the observations were supported by TEM analysis.
  •  
4.
  • Errandonea, Daniel, et al. (författare)
  • Experimental and theoretical confirmation of an orthorhombic phase transition in niobium at high pressure and temperature
  • 2020
  • Ingår i: COMMUNICATIONS MATERIALS. - : Springer Nature. - 2662-4443. ; 1:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Compared to other body-centered cubic (bcc) transition metals, Nb has been the subject of fewer compression studies and there are still aspects of its phase diagram which are unclear. Here, we report a combined theoretical and experimental study of Nb under high pressure and temperature. We present the results of static laser-heated diamond anvil cell experiments up to 120 GPa using synchrotron-based fast x-ray diffraction combined with ab initio quantum molecular dynamics simulations. The melting curve of Nb is determined and evidence for a solid-solid phase transformation in Nb with increasing temperature is found. The high-temperature phase of Nb is orthorhombic Pnma. The bcc-Pnma transition is clearly seen in the experimental data on the Nb principal Hugoniot. The bcc-Pnma coexistence observed in our experiments is explained. Agreement between the measured and calculated melting curves is very good except at 40-60 GPa where three experimental points lie below the theoretical melting curve by 250 K (or 7%); a possible explanation is given. The study of materials under extreme conditions can reveal interesting physics in diverse areas such as condensed matter and geophysics. Here, the authors investigate experimentally and theoretically the high pressure-high temperature phase diagram of niobium revealing a previously unobserved phase transition from body-centered cubic to orthorhombic phase.
  •  
5.
  • Munro, Keith, et al. (författare)
  • The high-pressure, high-temperature phase diagram of cerium
  • 2020
  • Ingår i: Journal of Physics. - : Institute of Physics (IOP). - 0953-8984 .- 1361-648X. ; 32:33
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an experimental study of the high-pressure, high-temperature behaviour of cerium up to ~22 GPa and 820 K using angle-dispersive x-ray diffraction and external resistive heating. Studies above 820 K were prevented by chemical reactions between the samples and the diamond anvils of the pressure cells. We unambiguously measure the stability region of the orthorhombic oC4 phase and find it reaches its apex at 7.1 GPa and 650 K. We locate the α-cF4–oC4–tI2 triple point at 6.1 GPa and 640 K, 1 GPa below the location of the apex of the oC4 phase, and 1–2 GPa lower than previously reported. We find the α-cF4 → tI2 phase boundary to have a positive gradient of 280 K (GPa)−1, less steep than the 670 K (GPa)−1 reported previously, and find the oC4 → tI2 phase boundary to lie at higher temperatures than previously found. We also find variations as large as 2–3 GPa in the transition pressures at which the oC4 → tI2 transition takes place at a given temperature, the reasons for which remain unclear. Finally, we find no evidence that the α-cF4 → tI2 is not second order at all temperatures up to 820 K.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy