SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Esquivel Dolores) "

Sökning: WFRF:(Esquivel Dolores)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Amaro-Gahete, Juan, et al. (författare)
  • Catalytic systems mimicking the [FeFe]-hydrogenase active site for visible-light-driven hydrogen production
  • 2021
  • Ingår i: Coordination chemistry reviews. - : Elsevier. - 0010-8545 .- 1873-3840. ; 448
  • Forskningsöversikt (refereegranskat)abstract
    • A global hydrogen economy could ensure environmentally sustainable, safe and cost-efficient renewable energy for the 21st century. Solar hydrogen production through artificial photosynthesis is a key strategy, and the activity of natural hydrogenase metalloenzymes an inspiration for the design of synthetic catalyst systems. [FeFe]-hydrogenase enzymes, present in anaerobic bacteria and green algae, are the most efficient class of biological catalysts for hydrogen evolution. The enzymes operate in an aqueous environment, utilizing electrons that ultimately stem from photosynthesis as the only energy source. Functional synthetic models of the [FeFe]-hydrogenase enzyme active site have garnered intense interest as potential catalysts for the reduction of protons to molecular hydrogen. Herein, we take an extensive journey through the field of biomimetic hydrogenase chemistry for lightdriven hydrogen production. We open with a brief presentation of the structure and redox mechanism of the natural enzyme. Synthetic methodologies, structural characteristics, and hydrogen generation metrics relevant to the synthetic diiron catalysts ([2Fe2S]) are discussed. We first examine multicomponent photocatalysis systems with the [2Fe2S] cluster, followed by photosensitizer-[2Fe2S] dyads and molecular triads. Finally, strategies for the incorporation of [2Fe2S] complexes into supramolecular assemblies, semiconductor supports, and hybrid heterogeneous platforms are laid out. We analyze the individual properties, scope, and limitations of the components present in the photocatalytic reactions. This review illuminates the most useful aspects to rationally design a wide variety of biomimetic catalysts inspired by the diiron subsite of [FeFe]-hydrogenases, and establishes design features shared by the most stable and efficient hydrogen producing photosystems. (C) 2021 The Author(s). Published by Elsevier B.V.
  •  
2.
  • Amaro-Gahete, Juan, et al. (författare)
  • Hydroxyl-Decorated Diiron Complex as a [FeFe]-Hydrogenase Active Site Model Complex : Light-Driven Photocatalytic Activity and Heterogenization on Ethylene-Bridged Periodic Mesoporous Organosilica
  • 2022
  • Ingår i: Catalysts. - : MDPI. - 2073-4344. ; 12:3
  • Tidskriftsartikel (refereegranskat)abstract
    • A biomimetic model complex of the [FeFe]-hydrogenase active site (FeFeOH) with an ethylene bridge and a pendant hydroxyl group has been synthesized, characterized and evaluated as catalyst for the light-driven hydrogen production. The interaction of the hydroxyl group present in the complex with 3-isocyanopropyltriethoxysilane provided a carbamate triethoxysilane bearing a diiron dithiolate complex (NCOFeFe), thus becoming a potentially promising candidate for anchoring on heterogeneous supports. As a proof of concept, the NCOFeFe precursor was anchored by a grafting procedure into a periodic mesoporous organosilica with ethane bridges (EthanePMO@NCOFeFe). Both molecular and heterogenized complexes were tested as catalysts for light-driven hydrogen generation in aqueous solutions. The photocatalytic conditions were optimized for the homogenous complex by varying the reaction time, pH, amount of the catalyst or photosensitizer, photon flux, and the type of light source (light-emitting diode (LED) and Xe lamp). It was shown that the molecular FeFeOH diiron complex achieved a decent turnover number (TON) of 70 after 6 h, while NCOFeFe and EthanePMO@NCOFeFe had slightly lower activities showing TONs of 37 and 5 at 6 h, respectively.
  •  
3.
  • Bhunia, Asamanjoy, et al. (författare)
  • A photoluminescent covalent triazine framework : CO2 adsorption, light-driven hydrogen evolution and sensing of nitroaromatics
  • 2016
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 4:35, s. 13450-13457
  • Tidskriftsartikel (refereegranskat)abstract
    • A highly photoluminescent (PL) porous covalent triazine-based framework (PCTF-8) is synthesized from tetra(4-cyanophenyl) ethylene by using trifluoromethanesulfonic acid as the catalyst at room temperature. Due to triazine units in the framework, the PCTF-8 exhibits excellent thermal stability (>400 degrees C). The Brunauer-Emmett-Teller (BET) specific surface area of PCTF-8 is 625 m(2) g(-1) which is lower than the one obtained from the synthesis under Lewis acid conditions (ZnCl2). At 1 bar and 273 K, the PCTF-8 adsorbs a significant amount of CO2 (56 cm(3) g(-1)) and CH4 (17 cm(3) g(-1)) which is highly comparable to nanoporous 1,3,5-triazine frameworks (NOP-1-6, 29-56 cm(3) g(-1)). This nitrogen rich framework exhibits good ideal selectivity (61 : 1 (85% N-2 : 15% CO2) at 273 K, 1 bar). Thus, it can be used as a promising candidate for potential applications in post-combustion CO2 capture and sequestration technologies. In addition, photoluminescence properties as well as the sensing behaviour towards nitroaromatics have been demonstrated. The fluorescence emission intensity of PCTF-8 is quenched by ca. 71% in the presence of 2,4,6-trinitrophenol (TNP). From time-resolved studies, a static quenching behaviour was found. This high photoluminescence property is used for hydrogen evolving organic photocatalysis from water in the presence of a sacrificial electron donor and a cocatalyst.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy