SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Estiarte M.) "

Sökning: WFRF:(Estiarte M.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dornelas, M., et al. (författare)
  • BioTIME: A database of biodiversity time series for the Anthropocene
  • 2018
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 27:7, s. 760-786
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km(2) (158 cm(2)) to 100 km(2) (1,000,000,000,000 cm(2)). Time period and grainBio: TIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates.
  •  
2.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
3.
  • Carter, M. S., et al. (författare)
  • Synthesizing greenhouse gas fluxes across nine European peatlands and shrublands - responses to climatic and environmental changes
  • 2012
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 9:10, s. 3739-3755
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we compare annual fluxes of methane (CH4), nitrous oxide (N2O) and soil respiratory carbon dioxide (CO2) measured at nine European peatlands (n = 4) and shrublands (n = 5). The sites range from northern Sweden to Spain, covering a span in mean annual air temperature from 0 to 16 degrees C, and in annual precipitation from 300 to 1300 mm yr(-1). The effects of climate change, including temperature increase and prolonged drought, were tested at five shrubland sites. At one peatland site, the long-term (> 30 yr) effect of drainage was assessed, while increased nitrogen deposition was investigated at three peatland sites. The shrublands were generally sinks for atmospheric CH4, whereas the peatlands were CH4 sources, with fluxes ranging from -519 to + 6890 mg CH4-Cm-2 yr(-1) across the studied ecosystems. At the peatland sites, annual CH4 emission increased with mean annual air temperature, while a negative relationship was found between net CH4 uptake and the soil carbon stock at the shrubland sites. Annual N2O fluxes were generally small ranging from -14 to 42 mg N2O-Nm(-2) yr(-1). Highest N2O emission occurred at the sites that had highest nitrate (NO3-) concentration in the soil water. Furthermore, experimentally increased NO3- deposition led to increased N2O efflux, whereas prolonged drought and long-term drainage reduced the N2O efflux. Soil CO2 emissions in control plots ranged from 310 to 732 g CO2-C m(-2) yr(-1). Drought and long-term drainage from -519 to + 6890 mg CH4-C m(-2) yr(-1) across the studied ecosystems. At the peatland sites, annual CH4 emission increased with mean annual air temperature, while a negative relationship was found between net CH4 uptake and the soil carbon stock at the shrubland sites. Annual N2O fluxes were generally small ranging from -14 to 42 mg N2O-N m(-2) yr(-1). Highest N2O emission occurred at the sites that had highest nitrate (NO3-) concentration in the soil water. Furthermore, experimentally increased NO3- deposition led to increased N2O efflux, whereas prolonged drought and long-term drainage reduced the N2O efflux. Soil CO2 emissions in control plots ranged from 310 to 732 g CO2-Cm-2 yr(-1). Drought and long-term drainage generally reduced the soil CO2 efflux, except at a hydric shrubland where drought tended to increase soil respiration. In terms of fractional importance of each greenhouse gas to the total numerical global warming response, the change in CO2 efflux dominated the response in all treatments (ranging 71-96%), except for NO3- addition where 89% was due to change in CH4 emissions. Thus, in European peatlands and shrublands the effect on global warming induced by the investigated anthropogenic disturbances will be dominated by variations in soil CO2 fluxes.
  •  
4.
  •  
5.
  • Liu, Daijun, et al. (författare)
  • Delayed and altered post-fire recovery pathways of Mediterranean shrubland under 20-year drought manipulation
  • 2022
  • Ingår i: Forest Ecology and Management. - : Elsevier BV. - 0378-1127. ; 506
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing water deficits and severe droughts are expected to alter the dynamics of vegetation post-disturbance recovery by decreasing new recruitment and limiting growth in semi-arid Mediterranean ecosystems in future. However, which vegetation metrics will be shifted and how they respond over time are not clear, and the experimental evidence is still limited. Here we assessed the impacts of a long-term (20 years) experimental drought (−30% rainfall) on the pathways of vegetation metrics related to species richness, community composition and abundance dynamics for an early-successional Mediterranean shrubland. The results indicate that the pathways of vegetation metrics were differently affected by experimental drought. The abundance of Globularia alypum follows pathway 1 (altered mature state). Simpson diversity and abundance of Erica multiflora follow pathway 2 (delayed succession) while species richness, community abundance and shrub abundance follow pathway 3 (alternative stable state). There were no significances for the resilience to extremely dry years (the ratio between the performance after and before severe events) between control and drought treatment for all vegetation metric. But, their resilience for the metrics (except Simpson diversity) to extremely dry years in 2016–17 were significantly lower than that of 2001 and of 2006–07, possibly caused by the severe water deficits in 2016–17 at mature successional stage. Principal component analysis (PCA) shows that the first two principal components explained 72.3 % of the variance in vegetation metrics. The first axis was mainly related to the changes in community abundance, shrub abundance and species richness while the second axis was related to Simpson diversity and abundance of G. alypum and E. multiflora. Principal component scores along PC1 between control and drought treatment were significantly decreased by long-term experimental drought, but the scores along PC2 were not affected. Further research should focus on successional pathways in more water-deficit conditions in Mediterranean ecosystems and the consequences of changes in vegetation recovery pathways on ecosystem functions such as biomass accumulation and soil properties.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy