SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Evans Molina Carmella) "

Sökning: WFRF:(Evans Molina Carmella)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Battaglia, Manuela, et al. (författare)
  • Introducing the Endotype Concept to Address the Challenge of Disease Heterogeneity in Type 1 Diabetes
  • 2020
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 43:1, s. 5-12
  • Tidskriftsartikel (refereegranskat)abstract
    • The clinical diagnosis of new-onset type 1 diabetes has, for many years, been considered relatively straightforward. Recently, however, there is increasing awareness that within this single clinical phenotype exists considerable heterogeneity: disease onset spans the complete age range; genetic susceptibility is complex; rates of progression differ markedly, as does insulin secretory capacity; and complication rates, glycemic control, and therapeutic intervention efficacy vary widely. Mechanistic and immunopathological studies typically show considerable patchiness across subjects, undermining conclusions regarding disease pathways. Without better understanding, type 1 diabetes heterogeneity represents a major barrier both to deciphering pathogenesis and to the translational effort of designing, conducting, and interpreting clinical trials of disease-modifying agents. This realization comes during a period of unprecedented change in clinical medicine, with increasing emphasis on greater individualization and precision. For complex disorders such as type 1 diabetes, the option of maintaining the "single disease" approach appears untenable, as does the notion of individualizing each single patient's care, obliging us to conceptualize type 1 diabetes less in terms of phenotypes (observable characteristics) and more in terms of disease endotypes (underlying biological mechanisms). Here, we provide our view on an approach to dissect heterogeneity in type 1 diabetes. Using lessons from other diseases and the data gathered to date, we aim to delineate a roadmap through which the field can incorporate the endotype concept into laboratory and clinical practice. We predict that such an effort will accelerate the implementation of precision medicine and has the potential for impact on our approach to translational research, trial design, and clinical management.
  •  
2.
  • Bediaga, Naiara G, et al. (författare)
  • Simplifying prediction of disease progression in pre-symptomatic type 1 diabetes using a single blood sample
  • 2021
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 64:11, s. 2432-2444
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: Accurate prediction of disease progression in individuals with pre-symptomatic type 1 diabetes has potential to prevent ketoacidosis and accelerate development of disease-modifying therapies. Current tools for predicting risk require multiple blood samples taken during an OGTT. Our aim was to develop and validate a simpler tool based on a single blood draw.METHODS: Models to predict disease progression using a single OGTT time point (0, 30, 60, 90 or 120 min) were developed using TrialNet data collected from relatives with type 1 diabetes and validated in independent populations at high genetic risk of type 1 diabetes (TrialNet, Diabetes Prevention Trial-Type 1, The Environmental Determinants of Diabetes in the Young [1]) and in a general population of Bavarian children who participated in Fr1da.RESULTS: Cox proportional hazards models combining plasma glucose, C-peptide, sex, age, BMI, HbA1c and insulinoma antigen-2 autoantibody status predicted disease progression in all populations. In TrialNet, the AUC for receiver operating characteristic curves for models named M60, M90 and M120, based on sampling at 60, 90 and 120 min, was 0.760, 0.761 and 0.745, respectively. These were not significantly different from the AUC of 0.760 for the gold standard Diabetes Prevention Trial Risk Score, which requires five OGTT blood samples. In TEDDY, where only 120 min blood sampling had been performed, the M120 AUC was 0.865. In Fr1da, the M120 AUC of 0.742 was significantly greater than the M60 AUC of 0.615.CONCLUSIONS/INTERPRETATION: Prediction models based on a single OGTT blood draw accurately predict disease progression from stage 1 or 2 to stage 3 type 1 diabetes. The operational simplicity of M120, its validity across different at-risk populations and the requirement for 120 min sampling to stage type 1 diabetes suggest M120 could be readily applied to decrease the cost and complexity of risk stratification.
  •  
3.
  • Curman, Philip, et al. (författare)
  • Hailey-Hailey Disease is Associated with Diabetes : A Population-based Cohort Study, Clinical Cohort Study, and Pedigree Analysis
  • 2023
  • Ingår i: Acta Dermato-Venereologica. - : Medical Journals Sweden. - 0001-5555 .- 1651-2057. ; 103
  • Tidskriftsartikel (refereegranskat)abstract
    • Hailey-Hailey disease is a rare hereditary skin disease caused by mutations in the ATP2C1 gene encoding the secretory pathway Ca2+/Mn2+-ATPase 1 (SPCA1) protein. Extracutaneous manifestations of Hailey-Hailey disease are plausible but still largely unknown. The aim of this study was to explore the association between Hailey-Hailey disease and diabetes. A population-based cohort study of 347 individuals with Hailey-Hailey  disease was performed to assess the risks of type 1  diabetes and type 2 diabetes, using Swedish nationwide registries. Pedigrees from 2 Swedish families with Hailey-Hailey disease were also investigated: 1 with concurrent type 1 diabetes and HLA-DQ3, the other with type 2 diabetes. Lastly, a clinical cohort with 23 individuals with Hailey-Hailey disease and matched healthy controls was evaluated regarding diabetes. In the register data males with Hailey-Hailey disease had a 70% elevated risk of type 2 diabetes, whereas no  excess risk among women could be confirmed. In both pedigrees an unusually high inheritance for diabetes was observed. In the clinical cohort, individuals with Hailey-Hailey disease displayed a metabolic phenotype indicative of type 2 diabetes. Hailey-Hailey disease seems to act as a synergistic risk factor for diabetes. This study indicates, for the first time, an association between Hailey-Hailey disease and diabetes and represents human evidence that SPCA1 and the Golgi apparatus may be implicated in diabetes pathophysiology.
  •  
4.
  • Leslie, R. David, et al. (författare)
  • Adult-Onset Type 1 Diabetes : Current Understanding and Challenges
  • 2021
  • Ingår i: Diabetes Care. - : American Diabetes Association (ADA). - 0149-5992 .- 1935-5548. ; 44:11, s. 2449-2456
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent epidemiological data have shown that more than half of all new cases of type 1 diabetes occur in adults. Key genetic, immune, and metabolic differences exist between adult- and childhood-onset type 1 diabetes, many of which are not well understood. A substantial risk of misclassification of diabetes type can result. Notably, some adults with type 1 diabetes may not require insulin at diagnosis, their clinical disease can masquerade as type 2 diabetes, and the consequent misclassification may result in inappropriate treatment. In response to this important issue, JDRF convened a workshop of international experts in November 2019. Here, we summarize the current understanding and unanswered questions in the field based on those discussions, highlighting epidemiology and immunogenetic and metabolic characteristics of adult-onset type 1 diabetes as well as disease-associated comorbidities and psychosocial challenges. In adult-onset, as compared with childhood-onset, type 1 diabetes, HLA-associated risk is lower, with more protective genotypes and lower genetic risk scores; multiple diabetes-associated autoantibodies are decreased, though GADA remains dominant. Before diagnosis, those with autoantibodies progress more slowly, and at diagnosis, serum C-peptide is higher in adults than children, with ketoacidosis being less frequent. Tools to distinguish types of diabetes are discussed, including body phenotype, clinical course, family history, autoantibodies, comorbidities, and C-peptide. By providing this perspective, we aim to improve the management of adults presenting with type 1 diabetes.
  •  
5.
  • Tobias, Deirdre K, et al. (författare)
  • Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine
  • 2023
  • Ingår i: Nature Medicine. - 1546-170X. ; 29:10, s. 2438-2457
  • Forskningsöversikt (refereegranskat)abstract
    • Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.
  •  
6.
  • Voss, Michael G., et al. (författare)
  • Time to Peak Glucose and Peak C-Peptide During the Progression to Type 1 Diabetes in the Diabetes Prevention Trial and TrialNet Cohorts
  • 2021
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 44:10, s. 2329-2336
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To assess the progression of type 1 diabetes using time to peak glucose or C-peptide during oral glucose tolerance tests (OGTTs) in autoantibody-positive relatives of people with type 1 diabetes. RESEARCH DESIGN AND METHODS: We examined 2-h OGTTs of participants in the Diabetes Prevention Trial Type 1 (DPT-1) and TrialNet Pathway to Prevention (PTP) studies. We included 706 DPT-1 participants (mean ± SD age, 13.84 ± 9.53 years; BMI Z-score, 0.33 ± 1.07; 56.1% male) and 3,720 PTP participants (age, 16.01 ± 12.33 years; BMI Z-score, 0.66 ± 1.3; 49.7% male). Log-rank testing and Cox regression analyses with adjustments (age, sex, race, BMI Z-score, HOMA-insulin resistance, and peak glucose/C-peptide levels, respectively) were performed. RESULTS: In each of DPT-1 and PTP, higher 5-year diabetes progression risk was seen in those with time to peak glucose >30 min and time to peak C-peptide >60 min (P < 0.001 for all groups), before and after adjustments. In models examining strength of association with diabetes development, associations were greater for time to peak C-peptide versus peak C-peptide value (DPT-1: χ2 = 25.76 vs. χ2 = 8.62; PTP: χ2 = 149.19 vs. χ2 = 79.98; all P < 0.001). Changes in the percentage of individuals with delayed glucose and/or C-peptide peaks were noted over time. CONCLUSIONS: In two independent at-risk populations, we show that those with delayed OGTT peak times for glucose or C-peptide are at higher risk of diabetes development within 5 years, independent of peak levels. Moreover, time to peak C-peptide appears more predictive than the peak level, suggesting its potential use as a specific biomarker for diabetes progression.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy