SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Evenchick Carol A.) "

Sökning: WFRF:(Evenchick Carol A.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bedard, Jean H., et al. (författare)
  • Geochemical Systematics of High Arctic Large Igneous Province Continental Tholeiites from Canada-Evidence for Progressive Crustal Contamination in the Plumbing System
  • 2021
  • Ingår i: Journal of Petrology. - : Oxford University Press. - 0022-3530 .- 1460-2415. ; 62:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Cretaceous High Arctic large igneous province (HALIP) sub-alkaline magmatic rocks in Canada are mostly evolved (MgO 2-7 wt%), sparsely plagioclase + clinopyroxene +/- olivine-phyric tholeiitic basalts. There were two main HALIP continental flood basalt (CFB) eruption episodes: 135-120 Ma (Isachsen Fm.) and 105-90 Ma (Strand Fiord Fm.), both associated with cogenetic doleritic sills and dykes. Building on a large modern database, 16 HALIP tholeiite types are defined and grouped into genetic series using Ce vs Sm/Yb-NMORB distributions. Comparison with model melting curves implies that higher-Sm/Yb HALIP basalt types record low-degree melting of garnet-bearing mantle sources. More voluminous intermediate- and low-Sm/Yb HALIP basalt types separated from the mantle at shallower levels after further extensive melting in the spinel-peridotite field. Within a given Sm/Yb range, increases in incompatible elements such as Ce are coupled with progressive clockwise rotation of normalized incompatible trace element profiles. Trace element modeling implies this cannot be due to closed-system fractional crystallization but requires progressive and ubiquitous incorporation of a component resembling continental crust. The fractionation models imply that low-Sm/Yb HALIP basalts (similar to 7 wt% MgO) initially crystallized olivine gabbro assemblages, with lower-MgO basalts successively crystallizing gabbro and ilmenite-gabbro assemblages. In contrast, higher-Sm/Yb basalts fractionated more clinopyroxene and ilmenite, but extensive plagioclase fractionation is still required to explain developing negative Sr-Eu anomalies. Backfractionation models require about 40% addition of olivine to bring the most primitive HALIP basalts (similar to 7% MgO) into equilibrium with Fo(89) mantle. Inverse fractionation-assimilation modeling shrinks the CFB signature, making decontaminated model parental melts more similar to enriched mid-ocean ridge basalt. The progressive increase of the contamination signature within each HALIP tholeiitic differentiation series is not consistent with models involving derivation of HALIP basalts from a mantle source previously enriched by subduction. Strong interaction of basalt with Sverdrup Basin sedimentary rocks may cause localized over-enrichment in K-Rb-Th-U, but cannot explain strong Ba enrichment in the absence of concomitant K-Rb-Th-U enrichment. The localized Ba enrichment could reflect either a Ba-rich lithospheric mantle component that is strongly manifested in the coeval HALIP alkaline suites, or syn- to post-emplacement fluid-mediated transfer from Ba-rich host rocks.
  •  
2.
  • Bedard, Jean H., et al. (författare)
  • High Arctic Large Igneous Province Alkaline Rocks in Canada : Evidence for Multiple Mantle Components
  • 2021
  • Ingår i: Journal of Petrology. - : Oxford University Press. - 0022-3530 .- 1460-2415. ; 62:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The Cretaceous High Arctic Large Igneous Province (HALIP) in Canada, although dominated by tholeiites (135-90 Ma), contains two main groups of alkaline igneous rocks. The older alkaline rocks (similar to 96 Ma) scatter around major fault and basement structures. They are represented by the newly defined Fulmar Suite alkaline basalt dykes and sills, and include Hassel Formation volcanic rocks. The younger alkaline group is represented by the Wootton Intrusive Complex (92.2-92.7 Ma), and the Audhild Bay Suite (83-73 Ma), both emplaced near the northern coast of Ellesmere Island. Fulmar Suite rocks resemble EM-type ocean island basalts (OIB) and most show limited crustal contamination. The Fulmar Suite shows increases of P2O5 at near-constant Ba-K-Zr-Ti that are nearly orthogonal to predicted fractionation- or melting-related variations, which we interpret as the result of melting composite mantle sources containing a regionally widespread apatite-bearing enriched component (P1). Low-P2O5 Fulmar Suite variants overlap compositionally with enriched HALIP tholeiites, and fall on common garnet Iherzolite trace element melting trajectories, suggesting variable degrees of melting of a geochemically similar source. High-P2O5 Hassel Formation basalts are unusual among Fulmar rocks, because they are strongly contaminated with depleted lower crust; and because they involve a high-P2O5-Ba-Eu mantle component (P2), similar to that seen in alkali basalt dykes from Greenland. The P2 component may have contained Ba-Eu-rich hawthorneite and/or carbonate minerals as well as apatite, and may typify parts of the Greenlandic sub-continental lithospheric mantle (SCLM). Mafic alkaline Audhild Bay Suite (ABS) rocks are volcanic and hypabyssal basanites, alkaline basalts and trachy-andesites, and resemble HIMU ocean island basalts in having high Nb, low Zr/Nb and low Sr-87/Sr-86(i). These mafic alkaline rocks are associated with felsic alkaline lavas and syenitic intrusions, but crustally derived rhyodacites and rhyolites also exist. The Wootton Intrusive Complex (WIC) contains geochemically similar plutonic rocks (alkali gabbros, diorites and anatectic granites), and may represent a more deeply eroded, slightly older equivalent of the ABS. Low-P2O5 ABS and WIC alkaline mafic rocks have flat heavy rare earth element (HREE) profiles suggesting shallow mantle melting; whereas High-P2O5 variants have steep HREE profiles indicating deeper separation from garnet-bearing residues. Some High-P2O5 mafic ABS rocks seem to contain the P1 and P2 components identified in Fulmar-Hassel rocks, whereas other samples trend towards possible High-P2O5 + Zr (PZr) and High-P2O5 + K2O (PK) components. We argue that the strongly alkaline northern Ellesmere Island magmas sampled mineralogically heterogeneous veins or metasomes in Greenlandic-type SCLM, which contained trace phases such as apatite, carbonates, hawthorneite, zircon, mica or richterite. The geographically more widespread apatite-bearing component (P1) could have formed part of a heterogeneous plume or upwelling mantle current that also generated HALIP tholeiites when melted more extensively, but may also have resided in the SCLM as relics of older events. Rare HALIP alkaline rocks with high K-Rb-U-Th fall on mixing paths implying strong local contamination from either Sverdrup Basin sedimentary rocks or granitic upper crust. However, the scarcity of potassic alkaline HALIP facies, together with the other trace element and isotopic signatures, provides little support for a ubiquitous fossil sedimentary subduction-zone component in the HALIP mantle source.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy