SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ezan P) "

Sökning: WFRF:(Ezan P)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blomstrand, Fredrik, 1969, et al. (författare)
  • Endothelins regulate astrocyte gap junctions in rat hippocampal slices.
  • 2004
  • Ingår i: The European journal of neuroscience. - 0953-816X. ; 19:4, s. 1005-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Gap junctional communication (GJC) is a typical feature of astrocytes proposed to contribute to the role played by these glial cells in brain physiology and pathology. In acutely isolated hippocampal slices from rat (P11-P19), intercellular diffusion of biocytin through gap junction channels was shown to occur between hundreds of cells immuno-positive for astrocytic markers studied in the CA1/CA2 region. Single-cell RT-PCR demonstrated astrocytic mRNA expression of several connexin (Cx) subtypes, the molecular constituent of gap junction channels, whereas immunoblotting confirmed that Cx43 and Cx30 are the main gap junction proteins in hippocampal astrocytes. In the brain, astrocytes represent a major target for endothelins (Ets), a vasoactive family of peptides. Our results demonstrate that Ets decrease the expression of phosphorylated Cx43 forms and are potent inhibitors of GJC. The Et-induced effects were investigated using specific Et receptor agonists and antagonists, including Bosentan (Tracleer trade mark ), an EtA/B receptor antagonist, and using hippocampal slices and cultures from EtB-receptor-deficient rats. Interestingly, the pharmacological profile of Ets effects did not follow the classical profile established in cardiovascular systems. The present study therefore identifies Ets as potent endogenous inhibitory regulators of astrocyte networks. As such, the action of these peptides on astrocyte GJC might be involved in the contribution of astrocytes to neuroprotective processes and have a therapeutic potential in neuropathological situations.
  •  
2.
  • Katoozi, S, et al. (författare)
  • Uncoupling of the Astrocyte Syncytium Differentially Affects AQP4 Isoforms
  • 2020
  • Ingår i: Cells. - : MDPI AG. - 2073-4409. ; 9:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The water channel protein aquaporin-4 (AQP4) and the gap junction forming proteins connexin-43 (Cx43) and connexin-30 (Cx30) are astrocytic proteins critically involved in brain water and ion homeostasis. While AQP4 is mainly involved in water flux across the astrocytic endfeet membranes, astrocytic gap junctions provide syncytial coupling allowing intercellular exchange of water, ions, and other molecules. We have previously shown that mice with targeted deletion of Aqp4 display enhanced gap junctional coupling between astrocytes. Here, we investigate whether uncoupling of the astrocytic syncytium by deletion of the astrocytic connexins Cx43 and Cx30 affects AQP4 membrane localization and expression. By using quantitative immunogold cytochemistry, we show that deletion of astrocytic connexins leads to a substantial reduction of perivascular AQP4, concomitant with a down-regulation of total AQP4 protein and mRNA. Isoform expression analysis shows that while the level of the predominant AQP4 M23 isoform is reduced in Cx43/Cx30 double deficient hippocampal astrocytes, the levels of M1, and the alternative translation AQP4ex isoform protein levels are increased. These findings reveal a complex interdependence between AQP4 and connexins, which are both significantly involved in homeostatic functions and astrogliopathologies.
  •  
3.
  • Quesseveur, Gaël, et al. (författare)
  • Attenuated Levels of Hippocampal Connexin 43 and its Phosphorylation Correlate with Antidepressant- and Anxiolytic-Like Activities in Mice.
  • 2015
  • Ingår i: Frontiers in Cellular Neuroscience. - : Frontiers Media SA. - 1662-5102. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Clinical and preclinical studies have implicated glial anomalies in major depression. Conversely, evidence suggests that the activity of antidepressant drugs is based, at least in part, on their ability to stimulate density and/or activity of astrocytes, a major glial cell population. Despite this recent evidence, little is known about the mechanism(s) by which astrocytes regulate emotionality. Glial cells communicate with each other through gap junction channels (GJCs), while they can also directly interact with neurons by releasing gliotransmitters in the extracellular compartment via an hemichannels (HCs)-dependent process. Both GJCs and HCs are formed by two main protein subunits: connexins (Cx) 30 and 43 (Cx30 and Cx43). Here we investigate the role of hippocampal Cx43 in the regulation of depression-like symptoms using genetic and pharmacological approaches. The first aim of this study was to evaluate the impact of the constitutive knock-down of Cx43 on a set of behaviors known to be affected in depression. Conversely, the expression of Cx43 was assessed in the hippocampus of mice subjected to prolonged corticosterone (CORT) exposure, given either alone or in combination with an antidepressant drug, the selective serotonin reuptake inhibitor fluoxetine. Our results indicate that the constitutive deficiency of Cx43 resulted in the expression of some characteristic hallmarks of antidepressant-/anxiolytic-like behavioral activities along with an improvement of cognitive performances. Moreover, in a new cohort of wild-type mice, we showed that CORT exposure elicited anxiety and depression-like abnormalities that were reversed by chronic administration of fluoxetine. Remarkably, CORT also increased hippocampal amounts of phosphorylated form of Cx43 whereas fluoxetine treatment normalized this parameter. From these results, we envision that antidepressant drugs may exert their therapeutic activity by decreasing the expression and/or activity of Cx43 resulting from a lower level of phosphorylation in the hippocampus.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy