SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fady Bruno) "

Sökning: WFRF:(Fady Bruno)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Benavides, Raquel, et al. (författare)
  • The GenTree Leaf Collection : Inter- and intraspecific leaf variation in seven forest tree species in Europe
  • 2021
  • Ingår i: Global Ecology and Biogeography. - : John Wiley & Sons. - 1466-822X .- 1466-8238. ; 30:3, s. 590-597
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation Trait variation within species can reveal plastic and/or genetic responses to environmental gradients, and may indicate where local adaptation has occurred. Here, we present a dataset of rangewide variation in leaf traits from seven of the most ecologically and economically important tree species in Europe. Sample collection and trait assessment are embedded in the GenTree project (EU-Horizon 2020), which aims at characterizing the genetic and phenotypic variability of forest tree species to optimize the management and sustainable use of forest genetic resources. Our dataset captures substantial intra- and interspecific leaf phenotypic variability, and provides valuable information for studying the relationship between ecosystem functioning and trait variability of individuals, and the response and resilience of species to environmental changes. Main types of variable contained We chose morphological and chemical characters linked to trade-offs between acquisition and conservation of resources and water use, namely specific leaf area, leaf size, carbon and nitrogen content and their ratio, and the isotopic signature of stable isotope C-13 and N-15 in leaves. Spatial location and grain We surveyed between 18 and 22 populations per species, 141 in total, across Europe. Time period Leaf sampling took place between 2016 and 2017. Major taxa and level of measurement We sampled at least 25 individuals in each population, 3,569 trees in total, and measured traits in 35,755 leaves from seven European tree species, i.e. the conifers Picea abies, Pinus pinaster and Pinus sylvestris, and the broadleaves Betula pendula, Fagus sylvatica, Populus nigra and Quercus petraea. Software format The data files are in ASCII text, tab delimited, not compressed.
  •  
2.
  • Brousseau, Louise, et al. (författare)
  • Local Adaptation in European Firs Assessed through Extensive Sampling across Altitudinal Gradients in Southern Europe
  • 2016
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 11:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Local adaptation is a key driver of phenotypic and genetic divergence at loci responsible for adaptive traits variations in forest tree populations. Its experimental assessment requires rigorous sampling strategies such as those involving population pairs replicated across broad spatial scales. Methods A hierarchical Bayesian model of selection (HBM) that explicitly considers both the replication of the environmental contrast and the hierarchical genetic structure among replicated study sites is introduced. Its power was assessed through simulations and compared to classical 'within-site' approaches (FDIST, BAYESCAN) and a simplified, within-site, version of the model introduced here (SBM). Results HBM demonstrates that hierarchical approaches are very powerful to detect replicated patterns of adaptive divergence with low false-discovery (FDR) and false-non-discovery (FNR) rates compared to the analysis of different sites separately through within-site approaches. The hypothesis of local adaptation to altitude was further addressed by analyzing replicated Abies alba population pairs (low and high elevations) across the species' southern distribution range, where the effects of climatic selection are expected to be the strongest. For comparison, a single population pair from the closely related species A. cephalonica was also analyzed. The hierarchical model did not detect any pattern of adaptive divergence to altitude replicated in the different study sites. Instead, idiosyncratic patterns of local adaptation among sites were detected by within-site approaches. Conclusion Hierarchical approaches may miss idiosyncratic patterns of adaptation among sites, and we strongly recommend the use of both hierarchical (multi-site) and classical (within-site) approaches when addressing the question of adaptation across broad spatial scales.
  •  
3.
  • Eggermont, Hilde, et al. (författare)
  • Nature-based Solutions : New Influence for Environmental Management and Research in Europe
  • 2015
  • Ingår i: GAIA. - : Oekom Publishers GmbH. - 0940-5550 .- 2625-5413. ; 24:4, s. 243-248
  • Tidskriftsartikel (refereegranskat)abstract
    • Greening roofs or walls to cool down city areas during summer, to capture storm water, to abate pollution, and to increase human well-being while enhancing biodiversity: nature-based solutions (NBS) refer to the sustainable management and use of nature for tackling societal challenges. Building on and complementing traditional biodiversity conservation and management strategies, NBS integrate science, policy, and practice and create biodiversity benefits in terms of diverse, well-managed ecosystems.
  •  
4.
  • Fady, Bruno, et al. (författare)
  • Genetics to the rescue : managing forests sustainably in a changing world
  • 2020
  • Ingår i: Tree Genetics & Genomes. - : SPRINGER HEIDELBERG. - 1614-2942 .- 1614-2950. ; 16:6
  • Tidskriftsartikel (refereegranskat)abstract
    • There is growing concern that the implementation of political agreements on climate change and biodiversity will not be enough to protect forests in the short run and up to the end of the 21st century. As mitigation efforts are lagging behind self-imposed, reasonable targets, genetic diversity will have a large and significant part to play in the process of adapting forests to climate change. Genetic diversity, the raw material of evolution, can be used for adaptation by natural selection and artificial breeding, in naturally regenerated and plantation forests alike. The 2-day scientific conference: "#rescueforests: Genetics to the rescue - Managing forests sustainably in a changing world," addressed the genetic diversity of forests. More specifically, the conference was about natural as well as assisted adaptive processes, their spatial scale, from fine grain to landscape and ecoregions, and how much of the genome it involves. It also dealt with phenotypes and how much of their variation is determined by underlying genetic diversity. And finally, and perhaps most importantly, the conference emphasized the importance of conservation and sustainable use of this genetic diversity as a nature-based solution to adapt under the fast pace of climate change. The conference demonstrated how improved knowledge on genomic diversity and evolutionary mechanisms can help to rescue forests, either naturally or by means of management.
  •  
5.
  • Larsson, Hanna, 1977- (författare)
  • Population Genetics and Genome Organization of Norway Spruce
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Understanding the underlying genetic causes of adaptation to local conditions is one of the main goals of population genetics. A strong latitudinal cline in the phenotypic trait of bud set is observed in present day populations of Norway spruce (Picea abies (L.) Karst). The first step towards determining how this strong selection on adaptive traits translates at the loci underlying the trait was to use multilocus sequence data to gain information on the fundamental population genetic properties of Norway spruce. We determined that the level of LD was low and genetic diversity was in the low range. Coalescent simulations revealed a demographic scenario of a fairly old and severe bottleneck as consistent with the observed data. To examine the role of selection at genes putatively involved in the control of bud set we, again, used a multilocus data set to test for deviations from neutrality and demographic scenarios inferred from background loci. Different candidate genes were identified by using different approaches, highlighting the difficulty in predicting how local adaptation will manifest itself on different time scales and in rangewide samples. When examining properties important in the design of association studies, the inevitable next step in identifying genes involved in local adaptation, we found that previous estimates of a low level of LD were highly influenced by the joint analysis of several loci over a large distribution range and that estimates of LD was in fact heterogeneous across loci and increased within populations. In addition, we found that within species tests for deviations from neutral expectations were highly sensitive to sample size. Additional genomic sequence characterization in Norway spruce is necessary to provide more comprehensive sets of markers for association studies, also including gene promoters and non-genic regions of the genome. In the final paper we show that the HMPR method is effective in constructing libraries enriched for the single copy fraction of the genome when applied to the large and dominantly repetitive genome of Norway spruce.In summary, the studies presented in this thesis together constitute a foundation for future studies on adaptive evolution in Norway spruce.
  •  
6.
  • Martinez-Sancho, Elisabet, et al. (författare)
  • The GenTree Dendroecological Collection, tree-ring and wood density data from seven tree species across Europe
  • 2020
  • Ingår i: Scientific Data. - : NATURE PUBLISHING GROUP. - 2052-4463. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • The dataset presented here was collected by the GenTree project (EU-Horizon 2020), which aims to improve the use of forest genetic resources across Europe by better understanding how trees adapt to their local environment. This dataset of individual tree-core characteristics including ring-width series and whole-core wood density was collected for seven ecologically and economically important European tree species: silver birch (Betula pendula), European beech (Fagus sylvatica), Norway spruce (Picea abies), European black poplar (Populus nigra), maritime pine (Pinus pinaster), Scots pine (Pinus sylvestris), and sessile oak (Quercus petraea). Tree-ring width measurements were obtained from 3600 trees in 142 populations and whole-core wood density was measured for 3098 trees in 125 populations. This dataset covers most of the geographical and climatic range occupied by the selected species. The potential use of it will be highly valuable for assessing ecological and evolutionary responses to environmental conditions as well as for model development and parameterization, to predict adaptability under climate change scenarios.
  •  
7.
  • Olsson, Sanna, et al. (författare)
  • Diversity and enrichment of breeding material for resilience in European forests
  • 2023
  • Ingår i: Forest Ecology and Management. - : Elsevier BV. - 0378-1127 .- 1872-7042. ; 530
  • Tidskriftsartikel (refereegranskat)abstract
    • Delivering material selected for breeding purposes into the wild in the context of sustainable forest management might reduce the levels of genetic diversity of future forests in comparison to that of natural populations. Another consequence might be a reduction of their resilience under uncertain future climatic and socio-economic conditions if these new populations lack adaptability. Despite the long tradition of breeding activities in Europe, there is still a need to assess the impact of genetically enriched material on forests' resilience. In this study, we address (1) the genetic diversity of selected material compared to its wild ancestors, and (2) how to enrich breeding material to support forests' resilience under changing socio-environmental conditions. We analysed 16 study cases of selected material delivered from breeding activities in four European forest tree species (Pinus halepensis Mill., Pinus nigra J.F. Arnold, Pinus pinaster Ait. and Populus nigra L.) with different levels of breeding. To answer these two questions, we first assessed and compared the genetic diversity of selected material versus natural populations using both putatively neutral and adaptive (based on diverging selection) Single Nucleotide Polymorphisms (SNPs). We then suggest how to enrich these populations for resilience under future climatic conditions by defining a core collection for each species including material from populations that will likely disappear under future conditions. Thanks to the large SNP datasets available for our focal species, we were able to detect some trends in our data. Expected and observed heterozygosity values for selected populations were almost always identical. The selected material showed small but significant genetic differentiation from their original population and their inbreeding coefficient was generally lower. However, the level of genetic improvement (i.e. low vs high) was not correlated with the observed genetic differences between selected material and natural populations.The genetic characterization of natural populations distributed across the species range, and the future projection of their range stability, made it possible to identify core-collections that would significantly enrich breeding populations under uncertain future environmental conditions.
  •  
8.
  • Opgenoorth, Lars, et al. (författare)
  • The GenTree Platform : growth traits and tree-level environmental data in 12 European forest tree species
  • 2021
  • Ingår i: GigaScience. - : Oxford University Press. - 2047-217X. ; 10:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Progress in the field of evolutionary forest ecology has been hampered by the huge challenge of phenotyping trees across their ranges in their natural environments, and the limitation in high-resolution environmental information.Findings: The GenTree Platform contains phenotypic and environmental data from 4,959 trees from 12 ecologically and economically important European forest tree species: Abies alba Mill. (silver fir), Betula pendula Roth. (silver birch), Fagus sylvatica L. (European beech), Picea abies (L.) H. Karst (Norway spruce), Pinus cembra L. (Swiss stone pine), Pinus halepensis Mill. (Aleppo pine), Pinus nigra Arnold (European black pine), Pinus pinaster Aiton (maritime pine), Pinus sylvestris L. (Scots pine), Populus nigra L. (European black poplar), Taxus baccata L. (English yew), and Quercus petraea (Matt.) Liebl. (sessile oak). Phenotypic (height, diameter at breast height, crown size, bark thickness, biomass, straightness, forking, branch angle, fructification), regeneration, environmental in situ measurements (soil depth, vegetation cover, competition indices), and environmental modeling data extracted by using bilinear interpolation accounting for surrounding conditions of each tree (precipitation, temperature, insolation, drought indices) were obtained from trees in 194 sites covering the species' geographic ranges and reflecting local environmental gradients.Conclusion: The GenTree Platform is a new resource for investigating ecological and evolutionary processes in forest trees. The coherent phenotyping and environmental characterization across 12 species in their European ranges allow for a wide range of analyses from forest ecologists, conservationists, and macro-ecologists. Also, the data here presented can be linked to the GenTree Dendroecological collection, the GenTree Leaf Trait collection, and the GenTree Genomic collection presented elsewhere, which together build the largest evolutionary forest ecology data collection available.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy