SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Faedi F.) "

Sökning: WFRF:(Faedi F.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Esposito, M., et al. (författare)
  • HD 219666 b: a hot-Neptune from TESS Sector 1
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 623:623
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the confirmation and mass determination of a transiting planet orbiting the old and inactive G7 dwarf star HD219666 (M-star = 0.92 +/- 0.03 M-circle dot, R-star = 1.03 +/- 0.03 R-circle dot, tau(star) = 10 +/- 2 Gyr). With a mass of M-b = 16.6 +/- 1.3 M-circle plus, a radius of R-b = 4.71 +/- 0.17 R-circle plus, and an orbital period of P-orb similar or equal to 6 days, HD219666 b is a new member of a rare class of exoplanets: the hot-Neptunes. The Transiting Exoplanet Survey Satellite (TESS) observed HD219666 (also known as TOI-118) in its Sector 1 and the light curve shows four transit-like events, equally spaced in time. We confirmed the planetary nature of the candidate by gathering precise radial-velocity measurements with the High Accuracy Radial velocity Planet Searcher (HARPS) at ESO 3.6 m. We used the co-added HARPS spectrum to derive the host star fundamental parameters (T-eff = 5527 +/- 65 K, log g(star) = 4.40 +/- 0.11 (cgs), [Fe/H] = 0.04 +/- 0.04 dex, log R-HK' = -5.07 +/- 0.03), as well as the abundances of many volatile and refractory elements. The host star brightness (V = 9.9) makes it suitable for further characterisation by means of in-transit spectroscopy. The determination of the planet orbital obliquity, along with the atmospheric metal-to-hydrogen content and thermal structure could provide us with important clues on the formation mechanisms of this class of objects.
  •  
2.
  • Simpson, E. K., et al. (författare)
  • WASP-37b : A 1.8 MJ exoplanet transiting a metal-poor star
  • 2011
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 141:1, s. 8-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the discovery of WASP-37b, a transiting hot Jupiter orbiting an m(v) = 12.7 G2-type dwarf, with a period of 3.577469 +/- 0.000011 d, transit epoch T-0 = 2455338.6188 +/- 0.0006 (HJD; dates throughout the paper are given in Coordinated Universal Time (UTC)), and a transit duration 0.1304(-0.0017)(+0.0018) d. The planetary companion has a mass M-p = 1.80 +/- 0.17 M-J and radius R-p = 1.16(-0.06)(+0.07) R-J, yielding a mean density of 1.15(-0.15)(+0.12) rho(J). From a spectral analysis, we find that the host star has M-star = 0.925 +/- 0.120 M-circle dot, R-star = 1.003 +/- 0.053 R-circle dot, T-eff = 5800 +/- 150 K, and [Fe/H] = -0.40 +/- 0.12. WASP-37 is therefore one of the lowest metallicity stars to host a transiting planet.
  •  
3.
  • Simpson, E. K., et al. (författare)
  • Independent Discovery of the Transiting Exoplanet HAT-P-14b
  • 2011
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 141:5, s. 161-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present SuperWASP observations of HAT-P-14b, a hot Jupiter discovered by Torres et al. The planet was found independently by the SuperWASP team and named WASP-27b after follow-up observations had secured the discovery, but prior to the publication by Torres et al. Our analysis of HAT-P-14/WASP-27 is in good agreement with the values found by Torres et al. and we provide additional evidence against astronomical false positives. Due to the brightness of the host star, V-mag = 10, HAT-P-14b is an attractive candidate for further characterization observations. The planet has a high impact parameter and the primary transit is close to grazing. This could readily reveal small deviations in the orbital parameters indicating the presence of a third body in the system, which may be causing the small but significant orbital eccentricity. Our results suggest that the planet may undergo a grazing secondary eclipse. However, even a non-detection would tightly constrain the system parameters.
  •  
4.
  • Simpson, E. K., et al. (författare)
  • The spin-orbit angles of the transiting exoplanets WASP-1b, WASP-24b, WASP-38b and HAT-P-8b from Rossiter-McLaughlin observations
  • 2011
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 414:4, s. 3023-3035
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations of the Rossiter-McLaughlin effect for the transiting exoplanets WASP-1b, WASP-24b, WASP-38b and HAT-P-8b, and deduce the orientations of the planetary orbits with respect to the host stars' rotation axes. The planets WASP-24b, WASP-38b and HAT-P-8b appear to move in prograde orbits and be well aligned, having sky-projected spin-orbit angles consistent with zero: lambda = -4 degrees.7 +/- 4 degrees.0, 15 degrees(+43)(-33) and -9 degrees.7(-7.7)(+9.0), respectively. The host stars have T(eff) < 6250K and conform with the trend of cooler stars having low obliquities. WASP-38b is a massive planet on a moderately long period, eccentric orbit so may be expected to have a misaligned orbit given the high obliquities measured in similar systems. However, we find no evidence for a large spin-orbit angle. By contrast, WASP-1b joins the growing number of misaligned systems and has an almost polar orbit, lambda = -79 degrees.0(-4.3)(+4.5). It is neither very massive, eccentric nor orbiting a hot host star, and therefore does not share the properties of many other misaligned systems.
  •  
5.
  • Maqueo Chew, Y. Gomez, et al. (författare)
  • Fundamental properties of the pre-main sequence eclipsing stars of MML 53 and the mass of the tertiary
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 623
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the most comprehensive analysis to date of the Upper Centaurus Lupus eclipsing binary MML 53 (with P-EB = 2.097892 d), and for the first time, confirm the bound-nature of the third star (in a P-3 similar to 9 yr orbit) by constraining its mass dynamically. Our analysis is based on new and archival spectra and time-series photometry, spanning 80% of one orbit of the outer component. From the spectroscopic analysis, we determined the temperature of the primary star to be 4880 +/- 100 K. The study of the close binary incorporated treatment of spots and dilution by the tertiary in the light curves, allowing for the robust measurement of the masses of the eclipsing components within 1% (M-1 = 1.0400 +/- 0.0067 M-circle dot and M-2 = 0.8907 +/- 0.0058 M-circle dot), their radii within 4.5% (R-1 = 1.283 +/- 0.043 R-circle dot and R-2 = 1.107 +/- 0.049 R-circle dot), and the temperature of the secondary star (T-eff,T-2 = 4379 +/- 100 K). From the analysis of the eclipse timings, and the change in systemic velocity of the eclipsing binary and the radial velocities of the third star, we measured the mass of the outer companion to be 0.7 M-circle dot (with a 20% uncertainty). The age we derived from the evolution of the temperature ratio between the eclipsing components is fully consistent with previous, independent estimates of the age of Upper Centaurus Lupus (16 +/- 2 Myr). At this age, the tightening of the MML 53 eclipsing binary has already occurred, thus supporting close-binary formation mechanisms that act early in the stars' evolution. The eclipsing components of MML 53 roughly follow the same theoretical isochrone, but appear to be inflated in radius (by 20% for the primary and 10% for the secondary) with respect to recent evolutionary models. However, our radius measurement of the 1.04 M-circle dot primary star of MML 53 is in full agreement with the independent measurement of the secondary of NP Per which has the same mass and a similar age. The eclipsing stars of MML 53 are found to be larger but not cooler than predicted by non-magnetic models, it is not clear what is the mechanism that is causing the radius inflation given that activity, spots and/or magnetic fields slowing their contraction, require the inflated stars to be cooler to remain in thermal equilibrium.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy