SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Falcon L. I.) "

Sökning: WFRF:(Falcon L. I.)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  • Glasbey, JC, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Garcia-Benito, R., et al. (författare)
  • CALIFA, the Calar Alto Legacy Integral Field Area survey III. Second public data release
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 576:A135
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper describes the Second Public Data Release (DR2) of the Calar Alto Legacy Integral Field Area (CALIFA) survey. The data for 200 objects are made public, including the 100 galaxies of the First Public Data Release (DR1). Data were obtained with the integral-field spectrograph PMAS /PPak mounted on the 3.5 m telescope at the Calar Alto observatory. Two different spectral setups are available for each galaxy, (i) a low-resolution V500 setup covering the wavelength range 3745-7500 angstrom with a spectral resolution of 6.0 angstrom (FWHM); and (ii) a medium-resolution V1200 setup covering the wavelength range 3650-4840 angstrom with a spectral resolution of 2.3 angstrom (FWHM). The sample covers a redshift range between 0.005 and 0.03, with a wide range of properties in the color-magnitude diagram, stellar mass, ionization conditions, and morphological types. All the cubes in the data release were reduced with the latest pipeline, which includes improved spectrophotometric calibration, spatial registration, and spatial resolution. The spectrophotometric calibration is better than 6% and the median spatial resolution is 2 4. In total, the second data release contains over 1.5 million spectra.
  •  
8.
  • Luo, Y. -W, et al. (författare)
  • Database of diazotrophs in global ocean : abundance, biomass and nitrogen fixation rates
  • 2012
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 4:1, s. 47-73
  • Tidskriftsartikel (refereegranskat)abstract
    • Marine N-2 fixing microorganisms, termed di-azotrophs, are a key functional group in marine pelagic ecosystems. The biological fixation of dinitrogen ( N-2) to bioavailable nitrogen provides an important new source of nitrogen for pelagic marine ecosystems and influences primary productivity and organic matter export to the deep ocean. As one of a series of efforts to collect biomass and rates specific to different phytoplankton functional groups, we have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling about 12 000 direct field measurements of cyanobacterial diazotroph abundances (based on microscopic cell counts or qPCR assays targeting the nifH genes) and N-2 fixation rates. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. The database is limited spatially, lacking large regions of the ocean especially in the Indian Ocean. The data are approximately log-normal distributed, and large variances exist in most sub-databases with non-zero values differing 5 to 8 orders of magnitude. Reporting the geometric mean and the range of one geometric standard error below and above the geometric mean, the pelagic N-2 fixation rate in the global ocean is estimated to be 62 (52-73) Tg Nyr(-1) and the pelagic diazotrophic biomass in the global ocean is estimated to be 2.1 (1.4-3.1) Tg C from cell counts and to 89 (43-150) Tg C from nifH- based abundances. Reporting the arithmetic mean and one standard error instead, these three global estimates are 140 +/- 9.2 Tg Nyr(-1), 18 +/- 1.8 Tg C and 590 +/- 70 Tg C, respectively. Uncertainties related to biomass conversion factors can change the estimate of geometric mean pelagic diazotrophic biomass in the global ocean by about +/- 70 %. It was recently established that the most commonly applied method used to measure N-2 fixation has underestimated the true rates. As a result, one can expect that future rate measurements will shift the mean N-2 fixation rate upward and may result in significantly higher estimates for the global N-2 fixation. The evolving database can nevertheless be used to study spatial and temporal distributions and variations of marine N-2 fixation, to validate geochemical estimates and to parameterize and validate biogeochemical models, keeping in mind that future rate measurements may rise in the future.
  •  
9.
  • Clayton, A., et al. (författare)
  • Considerations towards a roadmap for collection, handling and storage of blood extracellular vesicles
  • 2019
  • Ingår i: Journal of Extracellular Vesicles. - : Wiley. - 2001-3078. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • There is an increasing interest in exploring clinically relevant information that is present in body fluids, and extracellular vesicles (EVs) are intrinsic components of body fluids ("liquid biopsies"). In this report, we will focus on blood. Blood contains not only EVs but also cells, and non-EV particles including lipoproteins. Due to the high concentration of soluble proteins and lipoproteins, blood, plasma and serum have a high viscosity and density, which hampers the concentration, isolation and detection of EVs. Because most if not all studies on EVs are single-centre studies, their clinical relevance remains limited. Therefore, there is an urgent need to improve standardization and reproducibility of EV research. As a first step, the International Society on Extracellular Vesicles organized a biomarker workshop in Birmingham (UK) in November 2017, and during that workshop several working groups were created to focus on a particular body fluid. This report is the first output of the blood EV work group and is based on responses by work group members to a questionnaire in order to discover the contours of a roadmap. From the answers it is clear that most respondents are in favour of evidence-based research, education, quality control procedures, and physical models to improve our understanding and comparison of concentration, isolation and detection methods. Since blood is such a complex body fluid, we assume that the outcome of the survey may also be valuable for exploring body fluids other than blood.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy