SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fall Andreas) "

Sökning: WFRF:(Fall Andreas)

  • Resultat 1-10 av 61
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abitbol, Tiffany, et al. (författare)
  • Nanocellulose-Based Hybrid Materials for UV Blocking and Mechanically Robust Barriers
  • 2020
  • Ingår i: ACS Applied Bio Materials. - : American Chemical Society (ACS). - 2576-6422. ; 3:4, s. 2245-2254
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanocellulose (NC)-based hybrid coatings and films containing CeO2 and SiO2 nanoparticles (NPs) to impart UV screening and hardness properties, respectively, were prepared by solvent casting. The NC film-forming component (75 wt % of the overall solids) was composed entirely of cellulose nanocrystals (CNCs) or of CNCs combined with cellulose nanofibrils (CNFs). Zeta potential measurements indicated that the four NP types (CNC, CNF, CeO2, and SiO2) were stably dispersed in water and negatively charged at pH values between 6 and 9. The combination of NPs within this pH range ensured uniform formulations and homogeneous coatings and films, which blocked UV light, the extent of which depended on film thickness and CeO2 NP content, while maintaining good transparency in the visible spectrum (∼80%). The addition of a low amount of CNFs (1%) reduced the film hardness, but this effect was compensated by the addition of SiO2 NPs. Chiral nematic self-assembly was observed in the mixed NC film; however, this ordering was disrupted by the addition of the oxide NPs. The roughness of the hybrid coatings was reduced by the inclusion of oxide NPs into the NC matrix perhaps because the spherical oxide NPs were able to pack into the spaces between cellulose fibrils. We envision these hybrid coatings and films in barrier applications, photovoltaics, cosmetic formulations, such as sunscreens, and for the care and maintenance of wood and glass surfaces, or other surfaces that require a smooth, hard, and transparent finish and protection from UV damage.
  •  
2.
  • Andersson Ersman, Peter, et al. (författare)
  • Electrochromic Displays Screen Printed on Transparent Nanocellulose-Based Substrates
  • 2023
  • Ingår i: Advanced Photonics Research. - : John Wiley & Sons, Ltd. - 2699-9293.
  • Tidskriftsartikel (refereegranskat)abstract
    • Manufacturing of electronic devices via printing techniques is often considered to be an environmentally friendly approach, partially due to the efficient utilization of materials. Traditionally, printed electronic components (e.g., sensors, transistors, and displays) are relying on flexible substrates based on plastic materials; this is especially true in electronic display applications where, most of the times, a transparent carrier is required in order to enable presentation of the display content. However, plastic-based substrates are often ruled out in end user scenarios striving toward sustainability. Paper substrates based on ordinary cellulose fibers can potentially replace plastic substrates, but the opaqueness limits the range of applications where they can be used. Herein, electrochromic displays that are manufactured, via screen printing, directly on state-of-the-art fully transparent substrates based on nanocellulose are presented. Several different nanocellulose-based substrates, based on either nanofibrillated or nanocrystalline cellulose, are manufactured and evaluated as substrates for the manufacturing of electrochromic displays, and the optical and electrical switching performances of the resulting display devices are reported and compared. The reported devices do not require the use of metals and/or transparent conductive oxides, thereby providing a sustainable all-printed electrochromic display technology.
  •  
3.
  •  
4.
  • Benselfelt, Tobias, et al. (författare)
  • The Colloidal Properties of Nanocellulose
  • 2023
  • Ingår i: ChemSusChem. - : John Wiley and Sons Inc. - 1864-5631 .- 1864-564X. ; 16:8, s. e202201955-
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanocelluloses are anisotropic nanoparticles of semicrystalline assemblies of glucan polymers. They have great potential as renewable building blocks in the materials platform of a more sustainable society. As a result, the research on nanocellulose has grown exponentially over the last decades. To fully utilize the properties of nanocelluloses, a fundamental understanding of their colloidal behavior is necessary. As elongated particles with dimensions in a critical nanosize range, their colloidal properties are complex, with several behaviors not covered by classical theories. In this comprehensive Review, we describe the most prominent colloidal behaviors of nanocellulose by combining experimental data and theoretical descriptions. We discuss the preparation and characterization of nanocellulose dispersions, how they form networks at low concentrations, how classical theories cannot describe their behavior, and how they interact with other colloids. We then show examples of how scientists can use this fundamental knowledge to control the assembly of nanocellulose into new materials with exceptional properties. We hope aspiring and established researchers will use this Review as a guide. © 2023 The Authors. 
  •  
5.
  • Broadaway, K Alaine, et al. (författare)
  • Loci for insulin processing and secretion provide insight into type 2 diabetes risk.
  • 2023
  • Ingår i: American Journal of Human Genetics. - : Elsevier. - 0002-9297 .- 1537-6605. ; 110:2, s. 284-299
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin secretion is critical for glucose homeostasis, and increased levels of the precursor proinsulin relative to insulin indicate pancreatic islet beta-cell stress and insufficient insulin secretory capacity in the setting of insulin resistance. We conducted meta-analyses of genome-wide association results for fasting proinsulin from 16 European-ancestry studies in 45,861 individuals. We found 36 independent signals at 30 loci (p value < 5 × 10-8), which validated 12 previously reported loci for proinsulin and ten additional loci previously identified for another glycemic trait. Half of the alleles associated with higher proinsulin showed higher rather than lower effects on glucose levels, corresponding to different mechanisms. Proinsulin loci included genes that affect prohormone convertases, beta-cell dysfunction, vesicle trafficking, beta-cell transcriptional regulation, and lysosomes/autophagy processes. We colocalized 11 proinsulin signals with islet expression quantitative trait locus (eQTL) data, suggesting candidate genes, including ARSG, WIPI1, SLC7A14, and SIX3. The NKX6-3/ANK1 proinsulin signal colocalized with a T2D signal and an adipose ANK1 eQTL signal but not the islet NKX6-3 eQTL. Signals were enriched for islet enhancers, and we showed a plausible islet regulatory mechanism for the lead signal in the MADD locus. These results show how detailed genetic studies of an intermediate phenotype can elucidate mechanisms that may predispose one to disease.
  •  
6.
  • Brooke, Robert, 1989-, et al. (författare)
  • Nanocellulose based carbon ink and its application in electrochromic displays and supercapacitors
  • 2021
  • Ingår i: Flexible and Printed Electronics. - : IOP Publishing Ltd. - 2058-8585. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Conventional electronics have been highlighted as a very unsustainable technology; hazardous wastes are produced both during their manufacturing but also, due to their limited recyclability, during their end of life cycle (e.g. disposal in landfill). In recent years additive manufacturing processes (i.e. screen printing) have attracted significant interest as a more sustainable approach to electronic manufacturing (printed electronics). Despite the field of printed electronics addressing some of the issues related to the manufacturing of electronics, many components and inks are still considered hazardous to the environment and are difficult to recycle. Here we present the development of a low environmental impact carbon ink based on a non-hazardous solvent and a cellulosic matrix (nanocellulose) and its implementation in electrochromic displays (ECDs) and supercapacitors. As part of the reported work, a different protocol for mixing carbon and cellulose nanofibrils (rotation mixing and high shear force mixing), nanocellulose of different grades and different carbon: nanocellulose ratios were investigated and optimized. The rheology profiles of the different inks showed good shear thinning properties, demonstrating their suitability for screen-printing technology. The printability of the developed inks was excellent and in line with those of reference commercial carbon inks. Despite the lower electrical conductivity (400 S m-1 for the developed carbon ink compared to 1000 S m-1 for the commercial inks), which may be explained by their difference in composition (carbon content, density and carbon derived nature) compared to the commercial carbon, the developed ink functioned adequately as the counter electrode in all screen-printed ECDs and even allowed for improved supercapacitors compared to those utilizing commercial carbon inks. In this sense, the supercapacitors incorporating the developed carbon ink in the current collector layer had an average capacitance = 97.4 mF cm-2 compared to the commercial carbon ink average capacitance = 61.6 mF cm-2. The ink development reported herein provides a step towards more sustainable printed green electronics. © 2021 The Author(s).
  •  
7.
  • Carlsson, Linn, et al. (författare)
  • Modification of cellulose model surfaces by cationic polymer latexes prepared by RAFT-mediated surfactant-free emulsion polymerization
  • 2014
  • Ingår i: Polymer Chemistry. - : Royal Society of Chemistry. - 1759-9954 .- 1759-9962. ; 5:20, s. 6076-6086
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents the successful surface modification of a model cellulose substrate by the preparation and subsequent physical adsorption of cationic polymer latexes. The first part of the work introduces novel charged polymer nanoparticles constituted of amphiphilic block copolymers based on cationic poly(N,N-dimethylaminoethyl methacrylate-co-methacrylic acid) (P(DMAEMA-co-MAA)) as the hydrophilic segment, and poly(methyl methacrylate) (PMMA) as the hydrophobic segment. First, RAFT polymerization of N,N-dimethylaminoethyl methacrylate (DMAEMA) in water was performed at pH 7, below its pKa. The simultaneous hydrolysis of DMAEMA led to the formation of a statistical copolymer incorporating mainly protonated DMAEMA units and some deprotonated methacrylic acid units at pH 7. The following step was the RAFT-mediated surfactant-free emulsion polymerization of methyl methacrylate (MMA) using P(DMAEMA-co-MAA) as a hydrophilic macromolecular RAFT agent. During the synthesis, the formed amphiphilic block copolymers self-assembled into cationic latex nanoparticles by polymerization-induced self-assembly (PISA). The nanoparticles were found to increase in size with increasing molar mass of the hydrophobic block. The cationic latexes were subsequently adsorbed to cellulose model surfaces in a quartz crystal microbalance equipment with dissipation (QCM-D). The adsorbed amount, in mg m-2, increased with increasing size of the nanoparticles. This approach allows for physical surface modification of cellulose, utilizing a water suspension of particles for which both the surface chemistry and the surface structure can be altered in a well-defined way. 
  •  
8.
  •  
9.
  • Edberg, Jesper, 1988-, et al. (författare)
  • A Paper‐Based Triboelectric Touch Interface : Toward Fully Green and Recyclable Internet of Things
  • 2023
  • Ingår i: ADVANCED SENSOR RESEARCH. - : Wiley-Blackwell Publishing Inc.. - 2751-1219. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The transition to a sustainable society is driving the development of green electronic solutions designed to have a minimal environmental impact. One promising route to achieve this goal is to construct electronics from biobased materials like cellulose, which is carbon neutral, non‐toxic, and recyclable. This is especially true for internet‐of‐things devices, which are rapidly growing in number and are becoming embedded in every aspect of our lives. Here, paper‐based sensor circuits are demonstrated, which use triboelectric pressure sensors to help elderly people communicate with the digital world using an interface in the form of an electronic “book”, which is more intuitive to them. The sensors are manufactured by screen printing onto flexible paper substrates, using in‐house developed cellulose‐based inks with non‐hazardous solvents. The triboelectric sensor signal, generated by the contact between a finger and chemically modified cellulose, can reach several volts, which can be registered by a portable microcontroller card and transmitted by Bluetooth to any device with an internet connection. Apart from the microcontroller (which can be easily removed), the whole system can be recycled at the end of life. A triboelectric touch interface, manufactured using printed electronics on flexible paper substrates, using cellulose‐based functional inks is demonstrated. These metal‐free green electronics circuits are implemented in an “electronic book” demonstrator, equipped with wireless communication that can control remote devices, as a step toward sustainable and recyclable internet‐of‐things devices.
  •  
10.
  • Edberg, Jesper, et al. (författare)
  • Laser-induced graphitization of a forest-based ink for use in flexible and printed electronics
  • 2020
  • Ingår i: npj Flexible Electron.. - : Nature Research. - 2397-4621. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Laser-induced graphitization (LIG) is a method of converting a carbon-rich precursor into a highly conductive graphite-like carbon by laser scribing. This method has shown great promise as a versatile and low-cost patterning technique. Here we show for the first time how an ink based on cellulose and lignin can be patterned using screen printing followed by laser graphitization. Screen printing is one of the most commonly used manufacturing techniques of printed electronics, making this approach compatible with existing processing of various devices. The use of forest-based materials opens the possibility of producing green and sustainable electronics. Pre-patterning of the ink enables carbon patterns without residual precursor between the patterns. We investigated the effect of the ink composition, laser parameters, and additives on the conductivity and structure of the resulting carbon and could achieve low sheet resistance of 3.8 Ω sq-1 and a high degree of graphitization. We demonstrated that the process is compatible with printed electronics and finally manufactured a humidity sensor which uses lignin as the sensing layer and graphitized lignin as the electrodes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 61
Typ av publikation
tidskriftsartikel (46)
annan publikation (5)
konferensbidrag (5)
doktorsavhandling (2)
rapport (1)
forskningsöversikt (1)
visa fler...
licentiatavhandling (1)
visa färre...
Typ av innehåll
refereegranskat (45)
övrigt vetenskapligt/konstnärligt (16)
Författare/redaktör
Fall, Andreas (43)
Wågberg, Lars (17)
Abitbol, Tiffany (8)
Bergström, Lennart (8)
Aulin, Christian (7)
Wågberg, Lars, 1956- (7)
visa fler...
Fall, Andreas B. (7)
Håkansson, Karl (6)
Beni, Valerio, 1972- (6)
Granberg, Hjalmar (5)
Nordenström, Malin (5)
Schütz, Christina (5)
Lind, Lars (4)
Agthe, Michael (4)
Salazar-Alvarez, Ger ... (4)
Brooke, Robert, 1989 ... (4)
Gordeyeva, Korneliya (4)
Edberg, Jesper, 1988 ... (4)
Lundell, Fredrik (3)
März, Winfried (3)
Mucci, Lorelei A (3)
Wareham, Nicholas J. (3)
Laakso, Markku (3)
Fall, Tove, 1979- (3)
Langenberg, Claudia (3)
Boehnke, Michael (3)
Mohlke, Karen L (3)
Peters, Annette (3)
Barroso, Ines (3)
Walker, Mark (3)
Luan, Jian'an (3)
Gustafsson, Stefan (3)
Fall, Katja, 1971- (3)
Kleber, Marcus E. (3)
Pettersson, Andreas (3)
Lindström, Stefan (3)
Sprakel, Joris (3)
Frayling, Timothy M (3)
Jackson, Anne U. (3)
Grallert, Harald (3)
Lindgren, Cecilia M. (3)
Morris, Andrew P. (3)
Rider, Jennifer R (3)
Liu, Ching-Ti (3)
Carlsson, Linn (3)
Bornstein, Stefan R (3)
Schwarz, Peter E H (3)
Nyström, Gustav (3)
Guccini, Valentina (3)
Burman, Ann (3)
visa färre...
Lärosäte
RISE (38)
Kungliga Tekniska Högskolan (34)
Stockholms universitet (9)
Linköpings universitet (7)
Lunds universitet (6)
Karolinska Institutet (6)
visa fler...
Uppsala universitet (5)
Örebro universitet (3)
Mittuniversitetet (2)
Högskolan Dalarna (2)
Göteborgs universitet (1)
Umeå universitet (1)
visa färre...
Språk
Engelska (60)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (37)
Teknik (32)
Medicin och hälsovetenskap (7)
Lantbruksvetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy