SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Falsig J) "

Sökning: WFRF:(Falsig J)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lotharius, J, et al. (författare)
  • Progressive degeneration of human mesencephalic neuron-derived cells triggered by dopamine-dependent oxidative stress is dependent on the mixed-lineage kinase pathway
  • 2005
  • Ingår i: The Journal of Neuroscience. - 1529-2401. ; 25:27, s. 6329-6342
  • Tidskriftsartikel (refereegranskat)abstract
    • Models of Parkinson's disease (PD) based on selective neuronal death have been used to study pathogenic mechanisms underlying nigral cell death and in some instances to develop symptomatic therapies. For validation of putative neuroprotectants, a model is desirable in which the events leading to neurodegeneration replicate those occurring in the disease. We developed a human in vitro model of PD based on the assumption that dysregulated cytoplasmic dopamine levels trigger cell loss in this disorder. Differentiated human mesencephalic neuron-derived cells were exposed to methamphetamine (METH) to promote cytoplasmic dopamine accumulation. In the presence of elevated iron concentrations, as observed in PD, increased cytosolic dopamine led to oxidative stress, c-Jun N-terminal kinase (JNK) pathway activation, neurite degeneration, and eventually apoptosis. We examined the role of the mixed-lineage kinases (MLKs) in this complex degenerative cascade by using the potent inhibitor 3,9-bis[( ethylthio) methyl]-K-252a (CEP1347). Inhibition of MLKs not only prevented FeCl2+/METH- induced JNK activation and apoptosis but also early events such as neurite degeneration and oxidative stress. This broad neuroprotective action of CEP1347 was associated with increased expression of an oxidative stress-response modulator, activating transcription factor 4. As a functional consequence, transcription of the cystine/glutamate and glycine transporters, cellular cystine uptake and intracellular levels of the redox buffer glutathione were augmented. In conclusion, this new human model of parkinsonian neurodegeneration has the potential to yield new insights into neurorestorative therapeutics and suggests that enhancement of cytoprotective mechanisms, in addition to blockade of apoptosis, may be essential for disease modulation.
  •  
2.
  • Falsig, Jeppe, et al. (författare)
  • Chemical and biophysical insights into the propagation of prion strains
  • 2008
  • Ingår i: HFSP JOURNAL. - : Informa UK Limited. - 1955-2068. ; 2:6, s. 332-341
  • Tidskriftsartikel (refereegranskat)abstract
    • Transmissible spongiform encephalopathies (TSEs) are lethal infectious neurodegenerative diseases. TSEs are caused by prions, infectious agents lacking informational nucleic acids, and possibly identical with higher-order aggregates of the cellular glycolipoprotein PrPC. Prion strains are derived from TSE isolates that, even after inoculation into genetically identical hosts, cause disease with distinct patterns of protein aggregate deposition, incubation times, morphology of the characteristic brain damage, and cellular tropism. Most of these traits are relatively stable across serial passages. Here we review current techniques for studying prion strain differences in vivo and in cells, and discuss the strain phenomena in the general context of the knowledge gained from modeling prion fibril growth in vitro and in simple organisms.
  •  
3.
  • Sigurdson, Christina J, et al. (författare)
  • De novo generation of a transmissible spongiform encephalopathy by mouse transgenesis.
  • 2009
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 106:1, s. 304-309
  • Tidskriftsartikel (refereegranskat)abstract
    • Most transmissible spongiform encephalopathies arise either spontaneously or by infection. Mutations of PRNP, which encodes the prion protein, PrP, segregate with phenotypically similar diseases. Here we report that moderate overexpression in transgenic mice of mPrP(170N,174T), a mouse PrP with two point mutations that subtly affect the structure of its globular domain, causes a fully penetrant lethal spongiform encephalopathy with cerebral PrP plaques. This genetic disease was reproduced with 100% attack rate by intracerebral inoculation of brain homogenate to tga20 mice overexpressing WT PrP, and from the latter to WT mice, but not to PrP-deficient mice. Upon successive transmissions, the incubation periods decreased and PrP became more protease-resistant, indicating the presence of a strain barrier that was gradually overcome by repeated passaging. This shows that expression of a subtly altered prion protein, with known 3D structure, efficiently generates a prion disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy