SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fanni Silvia) "

Sökning: WFRF:(Fanni Silvia)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Corsi, Sara, et al. (författare)
  • Pregnenolone for the treatment of L-DOPA-induced dyskinesia in Parkinson's disease
  • 2023
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886. ; 363
  • Tidskriftsartikel (refereegranskat)abstract
    • Growing preclinical and clinical evidence highlights neurosteroid pathway imbalances in Parkinson's Disease (PD) and L-DOPA-induced dyskinesias (LIDs). We recently reported that 5α-reductase (5AR) inhibitors dampen dyskinesias in parkinsonian rats; however, unraveling which specific neurosteroid mediates this effect is critical to optimize a targeted therapy. Among the 5AR-related neurosteroids, striatal pregnenolone has been shown to be increased in response to 5AR blockade and decreased after 6-OHDA lesions in the rat PD model. Moreover, this neurosteroid rescued psychotic-like phenotypes by exerting marked antidopaminergic activity. In light of this evidence, we investigated whether pregnenolone might dampen the appearance of LIDs in parkinsonian drug-naïve rats. We tested 3 escalating doses of pregnenolone (6, 18, 36 mg/kg) in 6-OHDA-lesioned male rats and compared the behavioral, neurochemical, and molecular outcomes with those induced by the 5AR inhibitor dutasteride, as positive control. The results showed that pregnenolone dose-dependently countered LIDs without affecting L-DOPA-induced motor improvements. Post-mortem analyses revealed that pregnenolone significantly prevented the increase of validated striatal markers of dyskinesias, such as phospho-Thr-34 DARPP-32 and phospho-ERK1/2, as well as D1-D3 receptor co-immunoprecipitation in a fashion similar to dutasteride. Moreover, the antidyskinetic effect of pregnenolone was paralleled by reduced striatal levels of BDNF, a well-established factor associated with the development of LIDs. In support of a direct pregnenolone effect, LC/MS-MS analyses revealed that striatal pregnenolone levels strikingly increased after the exogenous administration, with no significant alterations in downstream metabolites. All these data suggest pregnenolone as a key player in the antidyskinetic properties of 5AR inhibitors and highlight this neurosteroid as an interesting novel tool to target LIDs in PD.
  •  
2.
  • Clemensson, Erik K.H., et al. (författare)
  • Tracking Rats in Operant Conditioning Chambers Using a Versatile Homemade Video Camera and DeepLabCut
  • 2020
  • Ingår i: Journal of visualized experiments : JoVE. - : MyJove Corporation. - 1940-087X. ; :160
  • Tidskriftsartikel (refereegranskat)abstract
    • Operant conditioning chambers are used to perform a wide range of behavioral tests in the field of neuroscience. The recorded data is typically based on the triggering of lever and nose-poke sensors present inside the chambers. While this provides a detailed view of when and how animals perform certain responses, it cannot be used to evaluate behaviors that do not trigger any sensors. As such, assessing how animals position themselves and move inside the chamber is rarely possible. To obtain this information, researchers generally have to record and analyze videos. Manufacturers of operant conditioning chambers can typically supply their customers with high-quality camera setups. However, these can be very costly and do not necessarily fit chambers from other manufacturers or other behavioral test setups. The current protocol describes how to build an inexpensive and versatile video camera using hobby electronics components. It further describes how to use the image analysis software package DeepLabCut to track the status of a strong light signal, as well as the position of a rat, in videos gathered from an operant conditioning chamber. The former is a great aid when selecting short segments of interest in videos that cover entire test sessions, and the latter enables analysis of parameters that cannot be obtained from the data logs produced by the operant chambers.
  •  
3.
  • Elabi, Osama F, et al. (författare)
  • Ropinirole Cotreatment Prevents Perivascular Glial Recruitment in a Rat Model of L-DOPA-Induced Dyskinesia
  • 2023
  • Ingår i: Cells. - 2073-4409. ; 12:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Dopamine replacement therapy for Parkinson's disease is achieved using L-DOPA or dopamine D2/3 agonists, such as ropinirole. Here, we compare the effects of L-DOPA and ropinirole, alone or in combination, on patterns of glial and microvascular reactivity in the striatum. Rats with unilateral 6-hydroxydopamine lesions were treated with therapeutic-like doses of L-DOPA (6 mg/kg), an equipotent L-DOPA-ropinirole combination (L-DOPA 3 mg/kg plus ropinirole 0.5 mg/kg), or ropinirole alone. Immunohistochemistry was used to examine the reactivity of microglia (ionized calcium-binding adapter molecule 1, IBA-1) and astroglia (glial fibrillary acidic protein, GFAP), as well as blood vessel density (rat endothelial cell antigen 1, RECA-1) and albumin extravasation. L-DOPA monotreatment and L-DOPA-ropinirole cotreatment induced moderate-severe dyskinesia, whereas ropinirole alone had negligible dyskinetic effects. Despite similar dyskinesia severity, striking differences in perivascular microglia and astroglial reactivity were found between animals treated with L-DOPA vs. L-DOPA-ropinirole. The former exhibited a marked upregulation of perivascular IBA-1 cells (in part CD68-positive) and IBA-1-RECA-1 contact points, along with an increased microvessel density and strong perivascular GFAP expression. None of these markers were significantly upregulated in animals treated with L-DOPA-ropinirole or ropinirole alone. In summary, although ropinirole cotreatment does not prevent L-DOPA-induced dyskinesia, it protects from maladaptive gliovascular changes otherwise associated with this disorder, with potential long-term benefits to striatal tissue homeostasis.
  •  
4.
  • Espa, Elena, et al. (författare)
  • Dopamine Agonist Cotreatment Alters Neuroplasticity and Pharmacology of Levodopa-Induced Dyskinesia
  • 2023
  • Ingår i: Movement Disorders. - : Wiley. - 0885-3185 .- 1531-8257. ; 38:3, s. 410-422
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Current models of levodopa (L-dopa)-induced dyskinesia (LID) are obtained by treating dopamine-depleted animals with L-dopa. However, patients with LID receive combination therapies that often include dopamine agonists.OBJECTIVE: Using 6-hydroxydopamine-lesioned rats as a model, we aimed to establish whether an adjunct treatment with the D2/3 agonist ropinirole impacts on patterns of LID-related neuroplasticity and drug responses.METHODS: Different regimens of L-dopa monotreatment and L-dopa-ropinirole cotreatment were compared using measures of hypokinesia and dyskinesia. Striatal expression of ∆FosB and angiogenesis markers were studied immunohistochemically. Antidyskinetic effects of different drug categories were investigated in parallel groups of rats receiving either L-dopa monotreatment or L-dopa combined with ropinirole.RESULTS: We defined chronic regimens of L-dopa monotreatment and L-dopa-ropinirole cotreatment inducing overall similar abnormal involuntary movement scores. Compared with the monotreatment group, animals receiving the L-dopa-ropinirole combination exhibited an overall lower striatal expression of ∆FosB with a distinctive compartmental distribution. The expression of angiogenesis markers and blood-brain barrier hyperpermeability was markedly reduced after L-dopa-ropinirole cotreatment compared with L-dopa monotreatment. Moreover, significant group differences were detected upon examining the response to candidate antidyskinetic drugs. In particular, compounds modulating D1 receptor signaling had a stronger effect in the L-dopa-only group, whereas both amantadine and the selective NMDA antagonist MK801 produced a markedly larger antidyskinetic effect in L-dopa-ropinirole cotreated animals.CONCLUSIONS: Cotreatment with ropinirole altered LID-related neuroplasticity and pharmacological response profiles. The impact of adjuvant dopamine agonist treatment should be taken into consideration when investigating LID mechanisms and candidate interventions in both clinical and experimental settings. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
  •  
5.
  • Scheggi, Simona, et al. (författare)
  • BDNF Overexpression Increases Striatal D3 Receptor Level at Striatal Neurons and Exacerbates D1-Receptor Agonist-Induced Dyskinesia
  • 2020
  • Ingår i: Journal of Parkinson's Disease. - 1877-718X. ; 10:4, s. 1503-1514
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: We recently showed that striatal overexpression of brain derived neurotrophic factor (BDNF) by adeno-associated viral (AAV) vector exacerbated L-DOPA-induced dyskinesia (LID) in 6-OHDA-lesioned rats. An extensive sprouting of striatal serotonergic terminals accompanied this effect, accounting for the increased susceptibility to LID.OBJECTIVE: We set to investigate whether the BDNF effect was restricted to LID, or extended to dyskinesia induced by direct D1 receptor agonists.METHODS: Unilaterally 6-OHDA-lesioned rats received a striatal injection of an AAV vector to induce BDNF overexpression. Eight weeks later, animals received daily treatments with a low dose of SKF82958 (0.02 mg/kg s.c.) and development of dyskinesia was evaluated. At the end of the experiment, D1 and D3 receptors expression levels and D1 receptor-dependent signaling pathways were measured in the striatum.RESULTS: BDNF overexpression induced significant worsening of dyskinesia induced by SKF82958 compared to the GFP group and increased the expression of D3 receptor at striatal level, even in absence of pharmacological treatment; by contrast, D1 receptor levels were not affected. In BDNF-overexpressing striata, SKF82958 administration resulted in increased levels of D1-D3 receptors co-immunoprecipitation and increased phosphorylation levels of Thr34 DARPP-32 and ERK1/2.CONCLUSION: Here we provide evidence for a functional link between BDNF, D3 receptors and D1-D3 receptor close interaction in the augmented susceptibility to dyskinesia in 6-OHDA-lesioned rats. We suggest that D1/D3 receptors interaction may be instrumental in driving the molecular alterations underlying the appearance of dyskinesia; its disruption may be a therapeutic strategy for treating dyskinesia in PD patients.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy