SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Farag Sherif) "

Sökning: WFRF:(Farag Sherif)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Farag, Mohamed A., et al. (författare)
  • Comparative metabolome classification of desert truffles Terfezia claveryi and Terfezia boudieri via its aroma and nutrients profile
  • 2021
  • Ingår i: Lebensmittel-Wissenschaft + Technologie. - : Elsevier. - 0023-6438 .- 1096-1127. ; 142
  • Tidskriftsartikel (refereegranskat)abstract
    • Desert truffles are popular ectomycorrhizal fungi valued worldwide for their nutritional and traditional health benefits. Herein, two chief desert truffles viz., Terfezia claveryi and T. boudieri were assessed for their metabolites heterogeneity in context of their volatile sensory and nutrients profile as analyzed via GC-MS. Primary metabolites accounting for nutritive indices in T. claveryi and T. boudieri were investigated with 61 peaks belonging to sugars, sugar alcohols and amino acids. After headspace solid-phase microextraction (HS-SPME), a total of 106 volatiles were annotated belonging to alcohols, ketones, aldehydes, esters, ethers and furans. The abundance of oxygenated monoterpenes as antimicrobials rationalizes for the folk use of desert truffles against trachoma. Benzyl isothiocyanate was detected as the sulfur containing volatile component in desert truffle and absent from truffles. Multivariate data analyses (MVA) revealed that 1-octen-3-ol and 3-octanone were the most significantly contributors in the discrimination of T. claveryi and T. boudieri specimens. Being more enriched in essential amino acids, T. claveryi provided a better sugar diet composition concurrent with lower sugars and higher sugar alcohols compared to T. boudieri. This study provides the first insight into desert truffles metabolites and sensory composition, and to account for its culinary and medicinal uses.
  •  
2.
  • Thomas, HS, et al. (författare)
  • 2019
  • swepub:Mat__t
  •  
3.
  • Mansouri, Kamel, et al. (författare)
  • CERAPP : Collaborative Estrogen Receptor Activity Prediction Project
  • 2016
  • Ingår i: Journal of Environmental Health Perspectives. - : Environmental Health Perspectives. - 0091-6765 .- 1552-9924. ; 124:7, s. 1023-1033
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Humans are exposed to thousands of man-made chemicals in the environment. Some chemicals mimic natural endocrine hormones and, thus, have the potential to be endocrine disruptors. Most of these chemicals have never been tested for their ability to interact with the estrogen receptor (ER). Risk assessors need tools to prioritize chemicals for evaluation in costly in vivo tests, for instance, within the U.S. EPA Endocrine Disruptor Screening Program. OBJECTIVES: We describe a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) and demonstrate the efficacy of using predictive computational models trained on high-throughput screening data to evaluate thousands of chemicals for ER-related activity and prioritize them for further testing. METHODS: CERAPP combined multiple models developed in collaboration with 17 groups in the United States and Europe to predict ER activity of a common set of 32,464 chemical structures. Quantitative structure-activity relationship models and docking approaches were employed, mostly using a common training set of 1,677 chemical structures provided by the U.S. EPA, to build a total of 40 categorical and 8 continuous models for binding, agonist, and antagonist ER activity. All predictions were evaluated on a set of 7,522 chemicals curated from the literature. To overcome the limitations of single models, a consensus was built by weighting models on scores based on their evaluated accuracies. RESULTS: Individual model scores ranged from 0.69 to 0.85, showing high prediction reliabilities. Out of the 32,464 chemicals, the consensus model predicted 4,001 chemicals (12.3%) as high priority actives and 6,742 potential actives (20.8%) to be considered for further testing.CONCLUSION: This project demonstrated the possibility to screen large libraries of chemicals using a consensus of different in silico approaches. This concept will be applied in future projects related to other end points.
  •  
4.
  • Mansouri, Kamel, et al. (författare)
  • CoMPARA : Collaborative Modeling Project for Androgen Receptor Activity
  • 2020
  • Ingår i: Journal of Environmental Health Perspectives. - 0091-6765 .- 1552-9924. ; 128:2, s. 1-17
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Endocrine disrupting chemicals (EDCs) are xenobiotics that mimic the interaction of natural hormones and alter synthesis, transport, or metabolic pathways. The prospect of EDCs causing adverse health effects in humans and wildlife has led to the development of scientific and regulatory approaches for evaluating bioactivity. This need is being addressed using high-throughput screening (HTS) in vitro approaches and computational modeling.OBJECTIVES: In support of the Endocrine Disruptor Screening Program, the U.S. Environmental Protection Agency (EPA) led two worldwide consortiums to virtually screen chemicals for their potential estrogenic and androgenic activities. Here, we describe the Collaborative Modeling Project for Androgen Receptor Activity (CoMPARA) efforts, which follows the steps of the Collaborative Estrogen Receptor Activity Prediction Project (CERAPP).METHODS: The CoMPARA list of screened chemicals built on CERAPP's list of 32,464 chemicals to include additional chemicals of interest, as well as simulated ToxCast (TM) metabolites, totaling 55,450 chemical structures. Computational toxicology scientists from 25 international groups contributed 91 predictive models for binding, agonist, and antagonist activity predictions. Models were underpinned by a common training set of 1,746 chemicals compiled from a combined data set of 11 ToxCast (TM)/Tox21 HTS in vitro assays.RESULTS: The resulting models were evaluated using curated literature data extracted from different sources. To overcome the limitations of single-model approaches, CoMPARA predictions were combined into consensus models that provided averaged predictive accuracy of approximately 80% for the evaluation set.DISCUSSION: The strengths and limitations of the consensus predictions were discussed with example chemicals; then, the models were implemented into the free and open-source OPERA application to enable screening of new chemicals with a defined applicability domain and accuracy assessment. This implementation was used to screen the entire EPA DSSTox database of similar to 875,000 chemicals, and their predicted AR activities have been made available on the EPA CompTox Chemicals dashboard and National Toxicology Program's Integrated Chemical Environment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy