SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Farago Bela) "

Sökning: WFRF:(Farago Bela)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bucciarelli, Saskia, et al. (författare)
  • Dramatic influence of patchy attractions on short-time protein diffusion under crowded conditions
  • 2016
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 2:12, s. 1601432-1601432
  • Tidskriftsartikel (refereegranskat)abstract
    • In the dense and crowded environment of the cell cytoplasm, an individual protein feels the presence of and interacts with all surrounding proteins. While we expect this to strongly influence the short-time diffusion coefficient Ds of proteins on length scales comparable to the nearest-neighbor distance, this quantity is difficult to assess experimentally. We demonstrate that quantitative information about Ds can be obtained from quasi-elastic neutron scattering experiments using the neutron spin echo technique. We choose two well-characterized and highly stable eye lens proteins, bovine α-crystallin and γB-crystallin, and measure their diffusion at concentrations comparable to those present in the eye lens. While diffusion slows down with increasing concentration for both proteins, we find marked variations that are directly linked to subtle differences in their interaction potentials. A comparison with computer simulations shows that anisotropic and patchy interactions play an essential role in determining the local short-time dynamics. Hence, our study clearly demonstrates the enormous effect that weak attractions can have on the short-time diffusion of proteins at concentrations comparable to those in the cellular cytosol.
  •  
2.
  • Cardinaux, Frederic, et al. (författare)
  • Cluster-Driven Dynamical Arrest in Concentrated Lysozyme Solutions
  • 2011
  • Ingår i: The Journal of Physical Chemistry Part B. - : American Chemical Society (ACS). - 1520-5207 .- 1520-6106. ; 115:22, s. 7227-7237
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a detailed experimental and numerical study of the structural and dynamical properties of salt-free lysozyme solutions. In particular, by combining small-angle X-ray scattering (SAXS) data with neutron spin echo (NSE) and rheology experiments, we are able to identify that an arrest transition takes place at intermediate densities, driven by the slowing down of the cluster motion. Using an effective pair potential among proteins, based on the combination of short-range attraction and long-range repulsion, we account remarkably well for the peculiar volume fraction dependence of the effective structure factor measured by SAXS. We show that a transition from a monomer to a cluster-dominated fluid happens at volume fractions larger than phi greater than or similar to 0.05 where the close agreement between NSE measurements and Brownian dynamics simulations confirms the transient nature of the clusters. Clusters even stay transient above the geometric percolation found in simulation at phi > 0.15, though NSE reveals a cluster lifetime that becomes increasingly large and indicates a divergence of the diffusivity at phi greater than or similar to 0.26. Macroscopic measurements of the viscosity confirm this transition where the long-lived-nature of the clusters is at the origin of the simultaneous dynamical arrest at all length scales.
  •  
3.
  • Kawecki, Maciej, et al. (författare)
  • Direct measurement of topological interactions in polymers under shear using neutron spin echo spectroscopy
  • 2019
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • We present in-situ neutron spin echo measurements on an entangled polydimethylsiloxane melt under shear and demonstrate the ability to monitor nano-scale dynamics in flowing liquids. We report no changes in the topological interactions of the chains for shear rates approaching the inverse longest relaxation time. Further experiments following along this line will allow to systematically test the predictions of theories, like e.g. convective constraint release.
  •  
4.
  • Magazù, S., et al. (författare)
  • Protein dynamics as seen by (quasi) elastic neutron scattering
  • 2017
  • Ingår i: Biochimica et Biophysica Acta - General Subjects. - : Elsevier BV. - 0304-4165. ; 1861:1, s. 3504-3512
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Elastic and quasielastic neutron scattering studies proved to be efficient probes of the atomic mean square displacement (MSD), a fundamental parameter for the characterization of the motion of individual atoms in proteins and its evolution with temperature and compositional environment. Scope of review We present a technical overview of the different types of experimental situations and the information quasi-elastic neutron scattering approaches can make available. In particular, MSD can crucially depend on the time scale over which the averaging (building of the “mean”) takes place, being defined by the instrumental resolution. Due to their high neutron scattering cross section, hydrogen atoms can be particularly sensitively observed with little interference by the other atoms in the sample. A few examples, including new data, are presented for illustration. Major conclusions The incoherent character of neutron scattering on hydrogen atoms restricts the information obtained to the self-correlations in the motion of individual atoms, simplifying at the same time the data analysis. On the other hand, the (often overlooked) exploration of the averaging time dependent character of MSD is crucial for unambiguous interpretation and can provide a wealth of information on micro- and nanoscale atomic motion in proteins. General significance By properly exploiting the broad range capabilities of (quasi)elastic neutron scattering techniques to deliver time dependent characterization of atomic displacements, they offer a sensitive, direct and simple to interpret approach to exploration of the functional activity of hydrogen atoms in proteins. Partial deuteration can add most valuable selectivity by groups of hydrogen atoms. “This article is part of a Special Issue entitled “Science for Life” Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo”.
  •  
5.
  • Roosen-Runge, Felix, et al. (författare)
  • Crowding in the Eye Lens : Modeling the Multisubunit Protein β-Crystallin with a Colloidal Approach
  • 2020
  • Ingår i: Biophysical Journal. - : Elsevier BV. - 0006-3495. ; 119:12, s. 2483-2496
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a multiscale characterization of aqueous solutions of the bovine eye lens protein βH crystallin from dilute conditions up to dynamical arrest, combining dynamic light scattering, small-angle x-ray scattering, tracer-based microrheology, and neutron spin echo spectroscopy. We obtain a comprehensive explanation of the observed experimental signatures from a model of polydisperse hard spheres with additional weak attraction. In particular, the model predictions quantitatively describe the multiscale dynamical results from microscopic nanometer cage diffusion over mesoscopic micrometer gradient diffusion up to macroscopic viscosity. Based on a comparative discussion with results from other crystallin proteins, we suggest an interesting common pathway for dynamical arrest in all crystallin proteins, with potential implications for the understanding of crowding effects in the eye lens.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy