SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Farghali Ahmed) "

Sökning: WFRF:(Farghali Ahmed)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Belal, Amany, et al. (författare)
  • A Novel Hydroxyapatite/Vitamin B-12 Nanoformula for Treatment of Bone Damage: Preparation, Characterization, and Anti-Arthritic, Anti-Inflammatory, and Antioxidant Activities in Chemically Induced Arthritic Rats
  • 2023
  • Ingår i: Pharmaceuticals. - : MDPI. - 1424-8247. ; 16:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The usage of nanomaterials for rheumatoid arthritis (RA) treatment can improve bioavailability and enable selective targeting. The current study prepares and evaluates the in vivo biological effects of a novel hydroxyapatite/vitamin B-12 nanoformula in Complete Freunds adjuvant-induced arthritis in rats. The synthesized nanoformula was characterized using XRD, FTIR, BET analysis, HERTEM, SEM, particle size, and zeta potential. We synthesized pure HAP NPs with 71.01% loading weight percentages of Vit B12 and 49 mg/g loading capacity. Loading of vitamin B-12 on hydroxyapatite was modeled by Monte Carlo simulation. Anti-arthritic, anti-inflammatory, and antioxidant effects of the prepared nanoformula were assessed. Treated arthritic rats showed lower levels of RF and CRP, IL-1 beta, TNF-alpha, IL-17, and ADAMTS-5, but higher IL-4 and TIMP-3 levels. In addition, the prepared nanoformula increased GSH content and GST antioxidant activity while decreasing LPO levels. Furthermore, it reduced the expression of TGF-beta mRNA. Histopathological examinations revealed an improvement in joint injuries through the reduction of inflammatory cell infiltration, cartilage deterioration, and bone damage caused by Complete Freunds adjuvant. These findings indicate that the anti-arthritic, antioxidant, and anti-inflammatory properties of the prepared nanoformula could be useful for the development of new anti-arthritic treatments.
  •  
2.
  • Belal, Amany, et al. (författare)
  • Therapeutic Potential of Zeolites/Vitamin B12 Nanocomposite on Complete Freunds Adjuvant-Induced Arthritis as a Bone Disorder: In Vivo Study and Bio-Molecular Investigations
  • 2023
  • Ingår i: Pharmaceuticals. - : MDPI. - 1424-8247. ; 16:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Rheumatoid arthritis (RA) is a long-term autoimmune disease. As nanotechnology has advanced, a growing number of nanodrugs have been used in the treatment of RA due to their unique physical and chemical properties. The purpose of this study was to assess the therapeutic potential of a novel zeolite/vitamin B12 nanocomposite (Nano ZT/Vit B12) formulation in complete Freunds adjuvant (CFA)-induced arthritis. The newly synthesized Nano ZT/Vit B12 was fully characterized using various techniques such as XRD, FT-IR, BET analysis, HERTEM, SEM, practical size, zeta potential, XRF, and EDX. The anti-arthritic, anti-inflammatory, and antioxidant activities as well as the immunomodulation effect of Nano ZT/Vit B12 on the CFA rat model of arthritis were examined. Histopathologic ankle joint injuries caused by CFA intrapedal injection included synovium hyperplasia, inflammatory cell infiltration, and extensive cartilage deterioration. The arthritic rats Nano ZT/Vit B12 supplementation significantly improved these effects. Furthermore, in arthritic rats, Nano ZT/Vit B12 significantly reduced serum levels of RF and CRP, as well as the levels of IL-1 beta, TNF-alpha, IL-17, and ADAMTS-5, while increasing IL-4 and TIMP-3 levels. Nano-ZT/Vit B12 significantly declined the LPO level and increased antioxidant activities, such as GSH content and GST activity, in the arthritic rats. In arthritic rats, Nano ZT/Vit B12 also reduced TGF-beta mRNA gene expression and MMP-13 protein levels. Collectively, Nano ZT/Vit B12 seems to have anti-arthritic, anti-inflammatory, and antioxidant properties, making it a promising option for RA in the future.
  •  
3.
  • Fytory, Mostafa, et al. (författare)
  • Core-Shell Nanostructured Drug Delivery Platform Based on Biocompatible Metal-Organic Framework-Ligated Polyethyleneimine for Targeted Hepatocellular Carcinoma Therapy
  • 2023
  • Ingår i: ACS Omega. - : AMER CHEMICAL SOC. - 2470-1343. ; 8:23, s. 20779-20791
  • Tidskriftsartikel (refereegranskat)abstract
    • Multifunctional nanosized metal-organic frameworks(NMOFs)have advanced rapidly over the past decade to develop drug deliverysystems (DDSs). These material systems still lack precise and selectivecellular targeting, as well as the fast release of the quantity ofdrugs that are simply adsorbed within and on the external surfaceof nanocarriers, which hinders their application in the drug delivery.Herein, we designed a biocompatible Zr-based NMOF with an engineeredcore and the hepatic tumor-targeting ligand, glycyrrhetinic acid graftedto polyethyleneimine (PEI) as the shell. The improved core-shellserves as a superior nanoplatform for efficient controlled and activedelivery of the anticancer drug doxorubicin (DOX) against hepaticcancer cells (HepG2 cells). In addition to their high loading capacityof 23%, the developed nanostructure DOX@NMOF-PEI-GA showed an acidicpH-stimulated response and extended the drug release time to 9 daysas well as enhanced the selectivity toward the tumor cells. Interestingly,the DOX-free nanostructures showed a minimal toxic effect on bothnormal human skin fibroblast (HSF) and hepatic cancer cell line (HepG2),but the DOX-loaded nanostructures exhibited a superior killing effecttoward the hepatic tumor, thus opening the way for the active drugdelivery and achieving efficient cancer therapy applications.
  •  
4.
  • Fytory, Mostafa, et al. (författare)
  • Dual-ligated metal organic framework as novel multifunctional nanovehicle for targeted drug delivery for hepatic cancer treatment
  • 2021
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • In the last decade, nanosized metal organic frameworks (NMOFs) have gained an increasing applicability as multifunctional nanocarriers for drug delivery in cancer therapy. However, only a limited number of platforms have been reported that can serve as an effective targeted drug delivery system (DDSs). Herein, we report rational design and construction of doxorubicin (DOX)-loaded nanoscale Zr (IV)-based NMOF (NH2-UiO-66) decorated with active tumor targeting moieties; folic acid (FA), lactobionic acid (LA), glycyrrhetinic acid (GA), and dual ligands of LA and GA, as efficient multifunctional DDSs for hepatocellular carcinoma (HCC) therapy. The success of modification was exhaustively validated by various structural, thermal and microscopic techniques. Biocompatibility studies indicated the safety of pristine NH2-UiO-66 against HSF cells whereas DOX-loaded dual-ligated NMOF was found to possess superior cytotoxicity against HepG2 cells which was further confirmed by flow cytometry. Moreover, fluorescence microscopy was used for monitoring cellular uptake in comparison to the non-ligated and mono-ligated NMOF. Additionally, the newly developed dual-ligated NMOF depicted a pH-responsiveness towards the DOX release. These findings open new avenues in designing various NMOF-based DDSs that actively target hepatic cancer to achieve precise therapy.
  •  
5.
  • Refaat, Doaa, et al. (författare)
  • Strategies for Molecular Imprinting and the Evolution of MIP Nanoparticles as Plastic Antibodies-Synthesis and Applications
  • 2019
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 20:24, s. 1-21
  • Forskningsöversikt (refereegranskat)abstract
    • Materials that can mimic the molecular recognition-based functions found in biology are a significant goal for science and technology. Molecular imprinting is a technology that addresses this challenge by providing polymeric materials with antibody-like recognition characteristics. Recently, significant progress has been achieved in solving many of the practical problems traditionally associated with molecularly imprinted polymers (MIPs), such as difficulties with imprinting of proteins, poor compatibility with aqueous environments, template leakage, and the presence of heterogeneous populations of binding sites in the polymers that contribute to high levels of non-specific binding. This success is closely related to the technology-driven shift in MIP research from traditional bulk polymer formats into the nanomaterial domain. The aim of this article is to throw light on recent developments in this field and to present a critical discussion of the current state of molecular imprinting and its potential in real world applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy