SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Faria Rui) "

Sökning: WFRF:(Faria Rui)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berdan, Emma L, 1983, et al. (författare)
  • How chromosomal inversions reorient the evolutionary process
  • 2023
  • Ingår i: Journal of Evolutionary Biology. - 1010-061X .- 1420-9101. ; 36:12, s. 1761-1782
  • Forskningsöversikt (refereegranskat)abstract
    • Inversions are structural mutations that reverse the sequence of a chromosome seg-ment and reduce the effective rate of recombination in the heterozygous state. They play a major role in adaptation, as well as in other evolutionary processes such as spe-ciation. Although inversions have been studied since the 1920s, they remain difficult to investigate because the reduced recombination conferred by them strengthens the effects of drift and hitchhiking, which in turn can obscure signatures of selection. Nonetheless, numerous inversions have been found to be under selection. Given re-cent advances in population genetic theory and empirical study, here we review how different mechanisms of selection affect the evolution of inversions. A key difference between inversions and other mutations, such as single nucleotide variants, is that the fitness of an inversion may be affected by a larger number of frequently interacting processes. This considerably complicates the analysis of the causes underlying the evolution of inversions. We discuss the extent to which these mechanisms can be disentangled, and by which approach.
  •  
2.
  • De Jode, Aurélien, et al. (författare)
  • Ten years of demographic modelling of divergence and speciation in the sea
  • 2022
  • Ingår i: Evolutionary Applications. - : Wiley. - 1752-4571. ; 16:2, s. 542-59
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding population divergence that eventually leads to speciation is essential for evolutionary biology. High species diversity in the sea was regarded as a paradox when strict allopatry was considered necessary for most speciation events because geographical barriers seemed largely absent in the sea, and many marine species have high dispersal capacities. Combining genome-wide data with demographic modelling to infer the demographic history of divergence has introduced new ways to address this classical issue. These models assume an ancestral population that splits into two subpopulations diverging according to different scenarios that allow tests for periods of gene flow. Models can also test for heterogeneities in population sizes and migration rates along the genome to account, respectively, for background selection and selection against introgressed ancestry. To investigate how barriers to gene flow arise in the sea, we compiled studies modelling the demographic history of divergence in marine organisms and extracted preferred demographic scenarios together with estimates of demographic parameters. These studies show that geographical barriers to gene flow do exist in the sea but that divergence can also occur without strict isolation. Heterogeneity of gene flow was detected in most population pairs suggesting the predominance of semipermeable barriers during divergence. We found a weak positive relationship between the fraction of the genome experiencing reduced gene flow and levels of genome-wide differentiation. Furthermore, we found that the upper bound of the ‘grey zone of speciation’ for our dataset extended beyond that found before, implying that gene flow between diverging taxa is possible at higher levels of divergence than previously thought. Finally, we list recommendations for further strengthening the use of demographic modelling in speciation research. These include a more balanced representation of taxa, more consistent and comprehensive modelling, clear reporting of results and simulation studies to rule out nonbiological explanations for general results.
  •  
3.
  • Jackson, Benjamin, et al. (författare)
  • Speciation, Chromosomal Rearrangements and
  • 2016
  • Ingår i: Encyclopedia of Evolutionary Biology. - : Elsevier. - 9780128004265 ; , s. 149-158
  • Bokkapitel (refereegranskat)
  •  
4.
  • Johannesson, Kerstin, 1955, et al. (författare)
  • Diverse pathways to speciation revealed by marine snails
  • 2024
  • Ingår i: Trends in Genetics. - 0168-9525 .- 1362-4555.
  • Forskningsöversikt (refereegranskat)abstract
    • Speciation is a key evolutionary process that is not yet fully understood. Combining population genomic and ecological data from multiple diverging pairs of marine snails (Littorina) supports the search for speciation mechanisms. Placing pairs on a one-dimensional speciation continuum, from undifferentiated populations to species, obscured the complexity of speciation. Adding multiple axes helped to describe either speciation routes or reproductive isolation in the snails. Divergent ecological selection repeatedly generated barriers between ecotypes, but appeared less important in completing speciation while genetic incompatibilities played a key role. Chromosomal inversions contributed to genomic barriers, but with variable impact. A multidimensional (hypercube) approach supported framing of questions and identification of knowledge gaps and can be useful to understand speciation in many other systems.
  •  
5.
  • Le Moan, Alan, et al. (författare)
  • An allozyme polymorphism is associated with a large chromosomal inversion in the marine snail Littorina fabalis
  • 2022
  • Ingår i: Evolutionary Applications. - : Wiley. - 1752-4571. ; 16:2, s. 279-92
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the genetic targets of natural selection is one of the most challenging goals of population genetics. Some of the earliest candidate genes were identified from associations between allozyme allele frequencies and environmental variation. One such example is the clinal polymorphism in the arginine kinase (Ak) gene in the marine snail Littorina fabalis. While other enzyme loci do not show differences in allozyme frequencies among populations, the Ak alleles are near differential fixation across repeated wave exposure gradients in Europe. Here, we use this case to illustrate how a new sequencing toolbox can be employed to characterize the genomic architecture associated with historical candidate genes. We found that the Ak alleles differ by nine nonsynonymous substitutions, which perfectly explain the different migration patterns of the allozymes during electrophoresis. Moreover, by exploring the genomic context of the Ak gene, we found that the three main Ak alleles are located on different arrangements of a putative chromosomal inversion that reaches near fixation at the opposing ends of two transects covering a wave exposure gradient. This shows Ak is part of a large (3/4 of the chromosome) genomic block of differentiation, in which Ak is unlikely to be the only target of divergent selection. Nevertheless, the nonsynonymous substitutions among Ak alleles and the complete association of one allele with one inversion arrangement suggest that the Ak gene is a strong candidate to contribute to the adaptive significance of the inversion.
  •  
6.
  • Le Moan, Alan, et al. (författare)
  • Coupling of twelve putative chromosomal inversions maintains a strong barrier to gene flow between snail ecotypes
  • 2024
  • Ingår i: EVOLUTION LETTERS. - 2056-3744.
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromosomal rearrangements can lead to the coupling of reproductive barriers, but whether and how they contribute to the completion of speciation remains unclear. Marine snails of the genus Littorina repeatedly form hybrid zones between populations segregating for multiple inversion arrangements, providing opportunities to study their barrier effects. Here, we analyzed 2 adjacent transects across hybrid zones between 2 ecotypes of Littorina fabalis ("large" and "dwarf") adapted to different wave exposure conditions on a Swedish island. Applying whole-genome sequencing, we found 12 putative inversions on 9 of 17 chromosomes. Nine of the putative inversions reached near differential fixation between the 2 ecotypes, and all were in strong linkage disequilibrium. These inversions cover 20% of the genome and carry 93% of divergent single nucleotide polymorphisms (SNPs). Bimodal hybrid zones in both transects indicated that the 2 ecotypes of Littorina fabalis maintain their genetic and phenotypic integrity following contact. The bimodality reflects the strong coupling between inversion clines and the extension of the barrier effect across the whole genome. Demographic inference suggests that coupling arose during a period of allopatry and has been maintained for > 1,000 generations after secondary contact. Overall, this study shows that the coupling of multiple chromosomal inversions contributes to strong reproductive isolation. Notably, 2 of the putative inversions overlap with inverted genomic regions associated with ecotype differences in a closely related species (Littorina saxatilis), suggesting the same regions, with similar structural variants, repeatedly contribute to ecotype evolution in distinct species.
  •  
7.
  • Lucek, Kay, et al. (författare)
  • The Impact of Chromosomal Rearrangements in Speciation: From Micro- to Macroevolution : A Macroevolutionary View on Chromosomal Speciation
  • 2023
  • Ingår i: Cold Spring Harbor Perspectives in Biology. - 1943-0264. ; 15:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromosomal rearrangements (CRs) have been known since almost the beginning of genetics. While an important role for CRs in speciation has been suggested, evidence primarily stems from theoretical and empirical studies focusing on the microevolutionary level (i.e., on taxon pairs where speciation is often incomplete). Although the role of CRs in eukaryotic speciation at a macroevolutionary level has been supported by associations between species diversity and rates of evolution of CRs across phylogenies, these findings are limited to a restricted range of CRs and taxa. Now that more broadly applicable and precise CR detection approaches have become available, we address the challenges in filling some of the conceptual and empirical gaps between micro- and macroevolutionary studies on the role of CRs in speciation. We synthesize what is known about the macroevolutionary impact of CRs and suggest new research avenues to overcome the pitfalls of previous studies to gain a more comprehensive understand- ing of the evolutionary significance of CRs in speciation across the tree of life.
  •  
8.
  • Marques, João P, et al. (författare)
  • Comparative mitogenomic analysis of three species of periwinkles: Littorina fabalis, L.obtusata and L. saxatilis.
  • 2017
  • Ingår i: Marine Genomics. - : Elsevier BV. - 1874-7787. ; 32, s. 41-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The flat periwinkles, Littorina fabalis and L.obtusata, offer an interesting system for local adaptation and ecological speciation studies. In order to provide genomic resources for these species, we sequenced their mitogenomes together with that of the rough periwinkle L.saxatilis by means of next-generation sequencing technologies. The three mitogenomes present the typical repertoire of 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and a putative control region. Although the latter could not be fully recovered in flat periwinkles using short-reads due to a highly repetitive fragment, in L.saxatilis this problem was overcome with additional long-reads and we were able to assemble the complete mitogenome. Both gene order and nucleotide composition are similar between the three species as well as compared to other Littorinimorpha. A large variance in divergence was observed across mitochondrial regions, with six- to ten-fold difference between the highest and the lowest divergence rates. Based on nucleotide changes on the whole molecule and assuming a molecular clock, L.fabalis and L. obtusata started to diverge around 0.8 Mya (0.4-1.1 Mya). The evolution of the mitochondrial protein-coding genes in the three Littorina species appears mainly influenced by purifying selection as revealed by phylogenetic tests based on dN/dS ratios that did not detect any evidence for positive selection, although some caution is required given the limited power of the dataset and the implemented approaches.
  •  
9.
  • Marques, João P., et al. (författare)
  • Transcriptomic resources for evolutionary studies in flat periwinkles and related species
  • 2020
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2020, The Author(s). The flat periwinkles, Littorina fabalis and L. obtusata, comprise two sister gastropod species that have an enormous potential to elucidate the mechanisms involved in ecological speciation in the marine realm. However, the molecular resources currently available for these species are still scarce. In order to circumvent this limitation, we used RNA-seq data to characterize the transcriptome of four individuals from each species sampled in different locations across the Iberian Peninsula. Four de novo transcriptome assemblies were generated, as well as a pseudo-reference using the L. saxatilis reference transcriptome as backbone. After transcripts’ annotation, variant calling resulted in the identification of 19,072 to 45,340 putatively species-diagnostic SNPs. The discriminatory power of a subset of these SNPs was validated by implementing an independent genotyping assay to characterize reference populations, resulting in an accurate classification of individuals into each species and in the identification of hybrids between the two. These data comprise valuable genomic resources for a wide range of evolutionary and conservation studies in flat periwinkles and related taxa.
  •  
10.
  • Reeve, James, et al. (författare)
  • Chromosomal inversion polymorphisms are widespread across the species ranges of rough periwinkles (Littorina saxatilis and L. arcana)
  • 2023
  • Ingår i: Molecular Ecology. - 0962-1083 .- 1365-294X.
  • Tidskriftsartikel (refereegranskat)abstract
    • Inversions are thought to play a key role in adaptation and speciation, suppressing recombination between diverging populations. Genes influencing adaptive traits cluster in inversions, and changes in inversion frequencies are associated with environmental differences. However, in many organisms, it is unclear if inversions are geographically and taxonomically widespread. The intertidal snail, Littorina saxatilis, is one such example. Strong associations between putative polymorphic inversions and phenotypic differences have been demonstrated between two ecotypes of L.saxatilis in Sweden and inferred elsewhere, but no direct evidence for inversion polymorphism currently exists across the species range. Using whole genome data from 107 snails, most inversion polymorphisms were found to be widespread across the species range. The frequencies of some inversion arrangements were significantly different among ecotypes, suggesting a parallel adaptive role. Many inversions were also polymorphic in the sister species, L.arcana, hinting at an ancient origin.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy