SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Farid Karim) "

Sökning: WFRF:(Farid Karim)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Farid, Karim, et al. (författare)
  • Case Report of Complex Amyotrophic Lateral Sclerosis with Cognitive Impairment and Cortical Amyloid Deposition.
  • 2015
  • Ingår i: Journal of Alzheimer's disease : JAD. - 1875-8908 .- 1387-2877. ; 47:3, s. 661-7
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS), a fatal disease of unknown origin, affects motor neurons in the primary motor cortex, brainstem, and spinal cord. Cognitive impairment may occur before the motor symptoms. We present a patient who was initially diagnosed with mild cognitive impairment (MCI) due to Alzheimer's disease (AD) but who developed ALS-like symptoms during follow-up and died shortly thereafter. A 60-year-old subject with cognitive impairment underwent neuropsychological testing, cerebrospinal fluid (CSF) analysis, structural imaging (computed tomography and magnetic resonance imaging) and functional imaging [11C]-Pittsburgh compound B (PIB) positron emission tomography (PET), [18F]-fluorodeoxyglucose (FDG) PET, and [11C]-deuterium-L-deprenyl (DED) PET. Neuropsychological testing showed episodic memory impairment. CSF P-tau and T-tau levels were elevated. CSF amyloid-β (Aβ)42 levels were initially normal but became pathological during follow-up. MCI was diagnosed. [18F]-FDG PET showed hypometabolism in the left temporal and prefrontal cortices and [11C]-PIB PET demonstrated amyloid plaque deposition in the prefrontal, posterior cingulate, and parietal cortices. [11C]-DED PET showed high brain accumulation consistent with astrocytosis. The memory impairment progressed and AD was diagnosed. Motor impairments developed subsequently and, following additional neurological evaluation, ALS was diagnosed. The disease progressed rapidly and the patient died with pronounced motor symptoms three years after the initial cognitive assessment. Since relatives refused autopsy, postmortem analysis was not possible.
  •  
2.
  •  
3.
  • Rodriguez-Vieitez, Elena, et al. (författare)
  • Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer's disease
  • 2016
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 139:3, s. 922-936
  • Tidskriftsartikel (refereegranskat)abstract
    • The relationships between pathophysiological processes in Alzheimer's disease remain largely unclear. In a longitudinal, multitracer PET study, Rodriguez-Vieitez et al. reveal that progression of autosomal dominant Alzheimer's disease is accompanied by prominent early and then declining astrocytosis, increasing amyloid plaque deposition and decreasing glucose metabolism. Astrocyte activation may initiate Alzheimer pathology.See Schott and Fox (doi: 10.1093/brain/awv405) for a scientific commentary on this article. The relationships between pathophysiological processes in Alzheimer's disease remain largely unclear. In a longitudinal, multitracer PET study, Rodriguez-Vieitez et al. reveal that progression of autosomal dominant Alzheimer's disease is accompanied by prominent early and then declining astrocytosis, increasing amyloid plaque deposition and decreasing glucose metabolism. Astrocyte activation may initiate Alzheimer pathology.Alzheimer's disease is a multifactorial dementia disorder characterized by early amyloid-beta, tau deposition, glial activation and neurodegeneration, where the interrelationships between the different pathophysiological events are not yet well characterized. In this study, longitudinal multitracer positron emission tomography imaging of individuals with autosomal dominant or sporadic Alzheimer's disease was used to quantify the changes in regional distribution of brain astrocytosis (tracer C-11-deuterium-L-deprenyl), fibrillar amyloid-beta plaque deposition (C-11-Pittsburgh compound B), and glucose metabolism (F-18-fluorodeoxyglucose) from early presymptomatic stages over an extended period to clinical symptoms. The 52 baseline participants comprised autosomal dominant Alzheimer's disease mutation carriers (n = 11; 49.6 +/- 10.3 years old) and non-carriers (n = 16; 51.1 +/- 14.2 years old; 10 male), and patients with sporadic mild cognitive impairment (n = 17; 61.9 +/- 6.4 years old; nine male) and sporadic Alzheimer's disease (n = 8; 63.0 +/- 6.5 years old; five male); for confidentiality reasons, the gender of mutation carriers is not revealed. The autosomal dominant Alzheimer's disease participants belonged to families with known mutations in either presenilin 1 (PSEN1) or amyloid precursor protein (APPswe or APParc) genes. Sporadic mild cognitive impairment patients were further divided into C-11-Pittsburgh compound B-positive (n = 13; 62.0 +/- 6.4; seven male) and C-11-Pittsburgh compound B-negative (n = 4; 61.8 +/- 7.5 years old; two male) groups using a neocortical standardized uptake value ratio cut-off value of 1.41, which was calculated with respect to the cerebellar grey matter. All baseline participants underwent multitracer positron emission tomography scans, cerebrospinal fluid biomarker analysis and neuropsychological assessment. Twenty-six of the participants underwent clinical and imaging follow-up examinations after 2.8 +/- 0.6 years. By using linear mixed-effects models, fibrillar amyloid-beta plaque deposition was first observed in the striatum of presymptomatic autosomal dominant Alzheimer's disease carriers from 17 years before expected symptom onset; at about the same time, astrocytosis was significantly elevated and then steadily declined. Diverging from the astrocytosis pattern, amyloid-beta plaque deposition increased with disease progression. Glucose metabolism steadily declined from 10 years after initial amyloid-beta plaque deposition. Patients with sporadic mild cognitive impairment who were C-11-Pittsburgh compound B-positive at baseline showed increasing amyloid-beta plaque deposition and decreasing glucose metabolism but, in contrast to autosomal dominant Alzheimer's disease carriers, there was no significant longitudinal decline in astrocytosis over time. The prominent initially high and then declining astrocytosis in autosomal dominant Alzheimer's disease carriers, contrasting with the increasing amyloid-beta plaque load during disease progression, suggests astrocyte activation is implicated in the early stages of Alzheimer's disease pathology.
  •  
4.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy