SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Farokhi Soodeh) "

Sökning: WFRF:(Farokhi Soodeh)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Farokhi, Soodeh, et al. (författare)
  • A hybrid cloud controller for vertical memory elasticity : a control-theoretic approach
  • 2016
  • Ingår i: Future generations computer systems. - : Elsevier. - 0167-739X .- 1872-7115. ; 65, s. 57-72
  • Tidskriftsartikel (refereegranskat)abstract
    • Web-facing applications are expected to provide certain performance guarantees despite dynamic and continuous workload changes. As a result, application owners are using cloud computing as it offers the ability to dynamically provision computing resources (e.g., memory, CPU) in response to changes in workload demands to meet performance targets and eliminates upfront costs. Horizontal, vertical, and the combination of the two are the possible dimensions that cloud application can be scaled in terms of the allocated resources. In vertical elasticity as the focus of this work, the size of virtual machines (VMs) can be adjusted in terms of allocated computing resources according to the runtime workload. A commonly used vertical resource elasticity approach is realized by deciding based on resource utilization, named capacity-based. While a new trend is to use the application performance as a decision making criterion, and such an approach is named performance-based. This paper discusses these two approaches and proposes a novel hybrid elasticity approach that takes into account both the application performance and the resource utilization to leverage the benefits of both approaches. The proposed approach is used in realizing vertical elasticity of memory (named as vertical memory elasticity), where the allocated memory of the VM is auto-scaled at runtime. To this aim, we use control theory to synthesize a feedback controller that meets the application performance constraints by auto-scaling the allocated memory, i.e., applying vertical memory elasticity. Different from the existing vertical resource elasticity approaches, the novelty of our work lies in utilizing both the memory utilization and application response time as decision making criteria. To verify the resource efficiency and the ability of the controller in handling unexpected workloads, we have implemented the controller on top of the Xen hypervisor and performed a series of experiments using the RUBBoS interactive benchmark application, under synthetic and real workloads including Wikipedia and FIFA. The results reveal that the hybrid controller meets the application performance target with better performance stability (i.e., lower standard deviation of response time), while achieving a high memory utilization (close to 83%), and allocating less memory compared to all other baseline controllers.
  •  
2.
  • Farokhi, Soodeh, et al. (författare)
  • Coordinating CPU and Memory Elasticity Controllers to Meet Service Response Time Constraints
  • 2015
  • Ingår i: 2015 INTERNATIONAL CONFERENCE ON CLOUD AND AUTONOMIC COMPUTING (ICCAC). - 9781467395663 ; , s. 69-80
  • Konferensbidrag (refereegranskat)abstract
    • Vertical elasticity is recognized as a key enabler for efficient resource utilization of cloud infrastructure through fine-grained resource provisioning, e.g., allowing CPU cycles to be leased for as short as a few seconds. However, little research has been done to support vertical elasticity where the focus is mostly on a single resource, either CPU or memory, while an application may need arbitrary combinations of these resources at different stages of its execution. Nonetheless, the existing techniques cannot be readily used as-is without proper orchestration since they may lead to either under-or over-provisioning of resources and consequently result in undesirable behaviors such as performance disparity. The contribution of this paper is the design of an autonomic resource controller using a fuzzy control approach as a coordination technique. The novel controller dynamically adjusts the right amount of CPU and memory required to meet the performance objective of an application, namely its response time. We perform a thorough experimental evaluation using three different interactive benchmark applications, RUBiS, RUBBoS, and Olio, under workload traces generated based on open and closed system models. The results show that the coordination of memory and CPU elasticity controllers using the proposed fuzzy control provisions the right amount of resources to meet the response time target without over-committing any of the resource types. In contrast, with no coordinating between controllers, the behaviour of the system is unpredictable e.g., the application performance may be met but at the expense of over-provisioning of one of the resources, or application crashing due to severe resource shortage as a result of conflicting decisions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2
Typ av publikation
konferensbidrag (1)
tidskriftsartikel (1)
Typ av innehåll
refereegranskat (2)
Författare/redaktör
Brandic, Ivona (2)
Elmroth, Erik (2)
Farokhi, Soodeh (2)
Lakew, Ewnetu Bayuh (2)
Klein, Cristian (1)
Jamshidi, Pooyan (1)
Lärosäte
Umeå universitet (2)
Språk
Engelska (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (1)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy