SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Faroni Alessandro) "

Sökning: WFRF:(Faroni Alessandro)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Faroni, Alessandro, et al. (författare)
  • Peripheral nerve regeneration : experimental strategies and future perspectives
  • 2015
  • Ingår i: Advanced Drug Delivery Reviews. - : Elsevier BV. - 0169-409X .- 1872-8294. ; 82-83, s. 160-167
  • Forskningsöversikt (refereegranskat)abstract
    • Peripheral nerve injuries represent a substantial clinical problem with insufficient or unsatisfactory treatment options. This review summarises all the events occurring after nerve damage at the level of the cell body, the site of injury and the target organ. Various experimental strategies to improve neuronal survival, axonal regeneration and target reinnervation are described including pharmacological approaches and cell-based therapies. Given the complexity of nerve regeneration, further studies are needed to address the biology of nerve injury, to improve the interaction with implantable scaffolds, and to implement cell-based therapies in nerve tissue engineering. 
  •  
2.
  • Ouasti, Sihem, et al. (författare)
  • Hyaluronic Acid (HA) Receptors and the Motility of Schwann Cell(-Like) Phenotypes
  • 2020
  • Ingår i: Cells. - : MDPI. - 2073-4409. ; 9:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The cluster of differentiation 44 (CD44) and the hyaluronan-mediated motility receptor (RHAMM), also known as CD168, are perhaps the most studied receptors for hyaluronic acid (HA); among their various functions, both are known to play a role in the motility of a number of cell types. In peripheral nerve regeneration, the stimulation of glial cell motility has potential to lead to better therapeutic outcomes, thus this study aimed to ascertain the presence of these receptors in Schwann cells (rat adult aSCs and neonatal nSCs) and to confirm their influence on motility. We included also a Schwann-like phenotype (dAD-MSCs) derived from adipose-derived mesenchymal stem cells (uAD-MSCs), as a possible basis for an autologous cell therapy. CD44 was expressed similarly in all cell types. Interestingly, uAD-MSCs were RHAMM(low), whereas both Schwann cells and dASCs turned out to be similarly RHAMM(high), and indeed antibody blockage of RHAMM effectively immobilized (in vitro scratch wound assay) all the RHAMM(high) Schwann(-like) types, but not the RHAMM(low) uAD-MSCs. Blocking CD44, on the other hand, affected considerably more uAD-MSCs than the Schwann(-like) cells, while the combined blockage of the two receptors immobilized all cells. The results therefore indicate that Schwann-like cells have a specifically RHAMM-sensitive motility, where the motility of precursor cells such as uAD-MSCs is CD44- but not RHAMM-sensitive; our data also suggest that CD44 and RHAMM may be using complementary motility-controlling circuits.
  •  
3.
  • Reid, Adam J, et al. (författare)
  • Long term peripheral nerve regeneration using a novel PCL nerve conduit
  • 2013
  • Ingår i: Neuroscience Letters. - : Elsevier. - 0304-3940 .- 1872-7972. ; 544, s. 125-30
  • Tidskriftsartikel (refereegranskat)abstract
    • The gold standard in surgical management of a peripheral nerve gap is currently autologous nerve grafting. This confers patient morbidity and increases surgical time therefore innovative experimental strategies towards engineering a synthetic nerve conduit are welcome. We have developed a novel synthetic conduit made of poly ε-caprolactone (PCL) that has demonstrated promising peripheral nerve regeneration in short-term studies. This material has been engineered to permit translation into clinical practice and here we demonstrate that histological outcomes in a long-term in vivo experiment are comparable with that of autologous nerve grafting. A 1cm nerve gap in a rat sciatic nerve injury model was repaired with a PCL nerve conduit or an autologous nerve graft. At 18 weeks post surgical repair, there was a similar volume of regenerating axons within the nerve autograft and PCL conduit repair groups, and similar numbers of myelinated axons in the distal stump of both groups. Furthermore, there was evidence of comparable re-innervation of end organ muscle and skin with the only significant difference the lower wet weight of the muscle from the PCL conduit nerve repair group. This study stimulates further work on the potential use of this synthetic biodegradable PCL nerve conduit in a clinical setting.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy