SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Feakins S. J.) "

Sökning: WFRF:(Feakins S. J.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Steinthorsdottir, Margret, et al. (författare)
  • The Miocene: The Future of the Past
  • 2021
  • Ingår i: Paleoceanography and Paleoclimatology. - : American Geophysical Union (AGU). - 2572-4517 .- 2572-4525. ; 36:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The Miocene epoch (23.03–5.33 Ma) was a time interval of global warmth, relative to today. Continental configurations and mountain topography transitioned toward modern conditions, and many flora and fauna evolved into the same taxa that exist today. Miocene climate was dynamic: long periods of early and late glaciation bracketed a ∼2 Myr greenhouse interval—the Miocene Climatic Optimum (MCO). Floras, faunas, ice sheets, precipitation, pCO2, and ocean and atmospheric circulation mostly (but not ubiquitously) covaried with these large changes in climate. With higher temperatures and moderately higher pCO2 (∼400–600 ppm), the MCO has been suggested as a particularly appropriate analog for future climate scenarios, and for assessing the predictive accuracy of numerical climate models—the same models that are used to simulate future climate. Yet, Miocene conditions have proved difficult to reconcile with models. This implies either missing positive feedbacks in the models, a lack of knowledge of past climate forcings, or the need for re-interpretation of proxies, which might mitigate the model-data discrepancy. Our understanding of Miocene climatic, biogeochemical, and oceanic changes on broad spatial and temporal scales is still developing. New records documenting the physical, chemical, and biotic aspects of the Earth system are emerging, and together provide a more comprehensive understanding of this important time interval. Here, we review the state-of-the-art in Miocene climate, ocean circulation, biogeochemical cycling, ice sheet dynamics, and biotic adaptation research as inferred through proxy observations and modeling studies.
  •  
2.
  • Steinthorsdottir, Margret, et al. (författare)
  • The Miocene : the Future of the Past
  • 2021
  • Ingår i: Paleoceanography and Paleoclimatology. - : American Geophysical Union (AGU). - 2572-4517 .- 2572-4525. ; 36:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The Miocene epoch (23.03–5.33 Ma) was a time interval of global warmth, relative to today. Continental configurations and mountain topography transitioned towards modern conditions, and many flora and fauna evolved into the same taxa that exist today. Miocene climate was dynamic: long periods of early and late glaciation bracketed a ∼2 Myr greenhouse interval – the Miocene Climatic Optimum (MCO). Floras, faunas, ice sheets, precipitation, pCO2, and ocean and atmospheric circulation mostly (but not ubiquitously) covaried with these large changes in climate. With higher temperatures and moderately higher pCO2 (∼400–600 ppm), the MCO has been suggested as a particularly appropriate analogue for future climate scenarios, and for assessing the predictive accuracy of numerical climate models – the same models that are used to simulate future climate. Yet, Miocene conditions have proved difficult to reconcile with models. This implies either missing positive feedbacks in the models, a lack of knowledge of past climate forcings, or the need for re‐interpretation of proxies, which might mitigate the model‐data discrepancy. Our understanding of Miocene climatic, biogeochemical, and oceanic changes on broad spatial and temporal scales is still developing. New records documenting the physical, chemical, and biotic aspects of the Earth system are emerging, and together provide a more comprehensive understanding of this important time interval. Here we review the state‐of‐the‐art in Miocene climate, ocean circulation, biogeochemical cycling, ice sheet dynamics, and biotic adaptation research as inferred through proxy observations and modelling studies.
  •  
3.
  • Naafs, B. D. A., et al. (författare)
  • Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids
  • 2017
  • Ingår i: Geochimica et Cosmochimica Acta. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0016-7037 .- 1872-9533. ; 208, s. 285-301
  • Tidskriftsartikel (refereegranskat)abstract
    • Glycerol dialkyl glycerol tetraethers (GDGTs) are membrane-spanning lipids from Bacteria and Archaea that are ubiquitous in a range of natural archives and especially abundant in peat. Previous work demonstrated that the distribution of bacterial branched GDGTs (brGDGTs) in mineral soils is correlated to environmental factors such as mean annual air temperature (MAAT) and soil pH. However, the influence of these parameters on brGDGT distributions in peat is largely unknown. Here we investigate the distribution of brGDGTs in 470 samples from 96 peatlands around the world with a broad mean annual air temperature (-8 to 27 degrees C) and pH (3-8) range and present the first peat-specific brGDGT-based temperature and pH calibrations. Our results demonstrate that the degree of cyclisation of brGDGTs in peat is positively correlated with pH, pH = 2.49 x CBTpeat + 8.07 (n = 51, R-2 = 0.58, RMSE = 0.8) and the degree of methylation of brGDGTs is positively correlated with MAAT, MAAT(peat) (degrees C) = 52.18 x MBT'(5me) - 23.05 (n = 96, R-2 = 0.76, RMSE = 4.7 degrees C). These peat-specific calibrations are distinct from the available mineral soil calibrations. In light of the error in the temperature calibration (similar to 4.7 degrees C), we urge caution in any application to reconstruct late Holocene climate variability, where the climatic signals are relatively small, and the duration of excursions could be brief. Instead, these proxies are well-suited to reconstruct large amplitude, longer-term shifts in climate such as deglacial transitions. Indeed, when applied to a peat deposit spanning the late glacial period (similar to 15.2 kyr), we demonstrate that MAAT(peat) yields absolute temperatures and relative temperature changes that are consistent with those from other proxies. In addition, the application of MAAT(peat) to fossil peat (i.e. lignites) has the potential to reconstruct terrestrial climate during the Cenozoic. We conclude that there is clear potential to use brGDGTs in peats and lignites to reconstruct past terrestrial climate. 
  •  
4.
  • Aichner, Bernhard, et al. (författare)
  • Hydroclimate in the Pamirs Was Driven by Changes in Precipitation-Evaporation Seasonality Since the Last Glacial Period
  • 2019
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 46:23, s. 13972-13983
  • Tidskriftsartikel (refereegranskat)abstract
    • The Central Asian Pamir Mountains (Pamirs) are a high-altitude region sensitive to climatic change, with only few paleoclimatic records available. To examine the glacial-interglacial hydrological changes in the region, we analyzed the geochemical parameters of a 31-kyr record from Lake Karakul and performed a set of experiments with climate models to interpret the results. delta D values of terrestrial biomarkers showed insolation-driven trends reflecting major shifts of water vapor sources. For aquatic biomarkers, positive delta D shifts driven by changes in precipitation seasonality were observed at ca. 31-30, 28-26, and 17-14 kyr BP. Multiproxy paleoecological data and modelling results suggest that increased water availability, induced by decreased summer evaporation, triggered higher lake levels during those episodes, possibly synchronous to northern hemispheric rapid climate events. We conclude that seasonal changes in precipitation-evaporation balance significantly influenced the hydrological state of a large waterbody such as Lake Karakul, while annual precipitation amount and inflows remained fairly constant.
  •  
5.
  • Häggi, C., et al. (författare)
  • GDGT distribution in tropical soils and its potential as a terrestrial paleothermometer revealed by Bayesian deep-learning models
  • 2023
  • Ingår i: Geochimica Et Cosmochimica Acta. - 0016-7037. ; 362, s. 41-64
  • Tidskriftsartikel (refereegranskat)abstract
    • Branched and isoprenoidal glycerol dialkyl glycerol tetraethers (br- and isoGDGTs) are membrane lipids produced by bacteria and archaea, respectively. These lipids form the basis of several frequently used paleoclimatic proxies. For example, the degree of methylation of brGDGTs (MBT'5Me) preserved in mineral soils (as well as peats and lakes) is one of the most important terrestrial paleothermometers, but features substantial variability that is so far insufficiently constrained. The distribution of isoGDGTs in mineral soils has received less attention and applications have focused on the use of the relative abundance of the isoGDGT crenarchaeol versus brGDGTs (BIT index) as an indicator of aridity. To expand our knowledge of the factors that can impact the br- and isoGDGT distribution in mineral soils, including the MBT'5Me index, and to improve isoGDGT-based precipitation reconstructions, we surveyed the GDGT distribution in a large collection of mineral surface soils (n = 229) and soil profiles (n = 22) across tropical South America. We find that the MBT'5Me index is significantly higher in grassland compared to forest soils, even among sites with the same mean annual air temperature. This is likely a result of a lack of shading in grasslands, leading to warmer soils. We also find a relationship between MBT'5Me and soil pH in tropical soils. Together with existing data from arid areas in mid-latitudes, we confirm the relationship between the BIT-index and aridity, but also find that the isoGDGT distribution alone is aridity dependent. The combined use of the BIT-index and isoGDGTs can strengthen reconstructions of past precipitation in terrestrial archives. In terms of site-specific variations, we find that the variability in BIT and MBT'5Me is larger at sites that show on average lower BIT and MBT'5Me values. In combination with modelling results, we suggest that this pattern arises from the mathematical formulation of these proxies that amplifies variability for intermediate values and mutes it for values close to saturation (value of 1). Soil profiles show relatively little variation with depth for the brGDGT indices. On the other hand, the isoGDGT distribution changes significantly with depth as does the relative abundance of br- versus isoGDGTs. This pattern is especially pronounced for the isoGDGTIsomerIndex where deeper soil horizons show a near absence of isoGDGT isomers. This might be driven by archaeal community changes in different soil horizons, potentially driven by the difference between aerobic and anaerobic archaeal communities. Finally, we use our extensive new dataset and Bayesian neural networks (BNNs) to establish new brGDGT-based temperature models. We provide a tropical soil calibration that removes the pH dependence of tropical soils (n = 404; RMSE = 2.0 degrees C) and global peat and soil models calibrated against the temperature of the months above freezing (n = 1740; RMSE = 2.4) and mean annual air temperature (n = 1740; RMSE = 3.6). All models correct for the bias found in arid samples. We also successfully test the new calibrations on Chinese loess records and tropical river sediments. Overall, the new calibrations provide improved temperature reconstructions for terrestrial archives.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy