SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fedak M. A.) "

Sökning: WFRF:(Fedak M. A.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2017
  • swepub:Mat__t
  •  
2.
  • Harcourt, R., et al. (författare)
  • Animal-borne telemetry: An integral component of the ocean observing toolkit
  • 2019
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 6:JUN
  • Tidskriftsartikel (refereegranskat)abstract
    • Animal telemetry is a powerful tool for observing marine animals and the physical environments that they inhabit, from coastal and continental shelf ecosystems to polar seas and open oceans. Satellite-linked biologgers and networks of acoustic receivers allow animals to be reliably monitored over scales of tens of meters to thousands of kilometers, giving insight into their habitat use, home range size, the phenology of migratory patterns and the biotic and abiotic factors that drive their distributions. Furthermore, physical environmental variables can be collected using animals as autonomous sampling platforms, increasing spatial and temporal coverage of global oceanographic observation systems. The use of animal telemetry, therefore, has the capacity to provide measures from a suite of essential ocean variables (EOVs) for improved monitoring of Earth's oceans. Here we outline the design features of animal telemetry systems, describe current applications and their benefits and challenges, and discuss future directions. We describe new analytical techniques that improve our ability to not only quantify animal movements but to also provide a powerful framework for comparative studies across taxa. We discuss the application of animal telemetry and its capacity to collect biotic and abiotic data, how the data collected can be incorporated into ocean observing systems, and the role these data can play in improved ocean management. © 2019 Harcourt, Sequeira, Zhang, Roquet, Komatsu, Heupel, McMahon, Whoriskey, Meekan, Carroll, Brodie, Simpfendorfer, Hindell, Jonsen, Costa, Block, Muelbert, Woodward, Weise, Aarestrup, Biuw, Boehme, Bograd, Cazau, Charrassin, Cooke, Cowley, de Bruyn, Jeanniard du Dot, Duarte, Eguíluz, Ferreira, Fernández-Gracia, Goetz, Goto, Guinet, Hammill, Hays, Hazen, Hückstädt, Huveneers, Iverson, Jaaman, Kittiwattanawong, Kovacs, Lydersen, Moltmann, Naruoka, Phillips, Picard, Queiroz, Reverdin, Sato, Sims, Thorstad, Thums, Treasure, Trites, Williams, Yonehara and Fedak.
  •  
3.
  • McMahon, C. R., et al. (författare)
  • Animal Borne Ocean Sensors - AniBOS - An Essential Component of the Global Ocean Observing System
  • 2021
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 8
  • Forskningsöversikt (refereegranskat)abstract
    • Marine animals equipped with biological and physical electronic sensors have produced long-term data streams on key marine environmental variables, hydrography, animal behavior and ecology. These data are an essential component of the Global Ocean Observing System (GOOS). The Animal Borne Ocean Sensors (AniBOS) network aims to coordinate the long-term collection and delivery of marine data streams, providing a complementary capability to other GOOS networks that monitor Essential Ocean Variables (EOVs), essential climate variables (ECVs) and essential biodiversity variables (EBVs). AniBOS augments observations of temperature and salinity within the upper ocean, in areas that are under-sampled, providing information that is urgently needed for an improved understanding of climate and ocean variability and for forecasting. Additionally, measurements of chlorophyll fluorescence and dissolved oxygen concentrations are emerging. The observations AniBOS provides are used widely across the research, modeling and operational oceanographic communities. High latitude, shallow coastal shelves and tropical seas have historically been sampled poorly with traditional observing platforms for many reasons including sea ice presence, limited satellite coverage and logistical costs. Animal-borne sensors are helping to fill that gap by collecting and transmitting in near real time an average of 500 temperature-salinity-depth profiles per animal annually and, when instruments are recovered (similar to 30% of instruments deployed annually, n = 103 +/- 34), up to 1,000 profiles per month in these regions. Increased observations from under-sampled regions greatly improve the accuracy and confidence in estimates of ocean state and improve studies of climate variability by delivering data that refine climate prediction estimates at regional and global scales. The GOOS Observations Coordination Group (OCG) reviews, advises on and coordinates activities across the global ocean observing networks to strengthen the effective implementation of the system. AniBOS was formally recognized in 2020 as a GOOS network. This improves our ability to observe the ocean's structure and animals that live in them more comprehensively, concomitantly improving our understanding of global ocean and climate processes for societal benefit consistent with the UN Sustainability Goals 13 and 14: Climate and Life below Water. Working within the GOOS OCG framework ensures that AniBOS is an essential component of an integrated Global Ocean Observing System.
  •  
4.
  • Roquet, Fabien, et al. (författare)
  • Estimates of the Southern Ocean general circulation improved by animal-borne instruments
  • 2013
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 40:23, s. 6176-6180
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the last decade, several hundred seals have been equipped with conductivity-temperature-depth sensors in the Southern Ocean for both biological and physical oceanographic studies. A calibrated collection of seal-derived hydrographic data is now available, consisting of more than 165,000 profiles. The value of these hydrographic data within the existing Southern Ocean observing system is demonstrated herein by conducting two state estimation experiments, differing only in the use or not of seal data to constrain the system. Including seal-derived data substantially modifies the estimated surface mixed-layer properties and circulation patterns within and south of the Antarctic Circumpolar Current. Agreement with independent satellite observations of sea ice concentration is improved, especially along the East Antarctic shelf. Instrumented animals efficiently reduce a critical observational gap, and their contribution to monitoring polar climate variability will continue to grow as data accuracy and spatial coverage increase.
  •  
5.
  • Treasure, Anne M., et al. (författare)
  • Marine Mammals Exploring the Oceans Pole to Pole A Review of the MEOP Consortium
  • 2017
  • Ingår i: Oceanography. - : The Oceanography Society. - 1042-8275. ; 30:2, s. 132-138
  • Tidskriftsartikel (refereegranskat)abstract
    • Polar oceans are poorly monitored despite the important role they play in regulating Earth's climate system. Marine mammals equipped with biologging devices are now being used to fill the data gaps in these logistically difficult to sample regions. Since 2002, instrumented animals have been generating exceptionally large data sets of oceanographic CTD casts (>500,000 profiles), which are now freely available to the scientific community through the MEOP data portal (http://meop.net). MEOP (Marine Mammals Exploring the Oceans Pole to Pole) is a consortium of international researchers dedicated to sharing animal-derived data and knowledge about the polar oceans. Collectively, MEOP demonstrates the power and cost-effectiveness of using marine mammals as data-collection platforms that can dramatically improve the ocean observing system for biological and physical oceanographers. Here, we review the MEOP program and database to bring it to the attention of the international community.
  •  
6.
  • Hindell, Mark A., et al. (författare)
  • Circumpolar habitat use in the southern elephant seal : implications for foraging success and population trajectories
  • 2016
  • Ingår i: Ecosphere. - : Wiley. - 2150-8925 .- 2150-8925. ; 7:5
  • Tidskriftsartikel (refereegranskat)abstract
    • In the Southern Ocean, wide-ranging predators offer the opportunity to quantify how animals respond to differences in the environment because their behavior and population trends are an integrated signal of prevailing conditions within multiple marine habitats. Southern elephant seals in particular, can provide useful insights due to their circumpolar distribution, their long and distant migrations and their performance of extended bouts of deep diving. Furthermore, across their range, elephant seal populations have very different population trends. In this study, we present a data set from the International Polar Year project; Marine Mammals Exploring the Oceans Pole to Pole for southern elephant seals, in which a large number of instruments (N = 287) deployed on animals, encompassing a broad circum-Antarctic geographic extent, collected in situ ocean data and at-sea foraging metrics that explicitly link foraging behavior and habitat structure in time and space. Broadly speaking, the seals foraged in two habitats, the relatively shallow waters of the Antarctic continental shelf and the Kerguelen Plateau and deep open water regions. Animals of both sexes were more likely to exhibit area-restricted search (ARS) behavior rather than transit in shelf habitats. While Antarctic shelf waters can be regarded as prime habitat for both sexes, female seals tend to move northwards with the advance of sea ice in the late autumn or early winter. The water masses used by the seals also influenced their behavioral mode, with female ARS behavior being most likely in modified Circumpolar Deepwater or northerly Modified Shelf Water, both of which tend to be associated with the outer reaches of the Antarctic Continental Shelf. The combined effects of (1) the differing habitat quality, (2) differing responses to encroaching ice as the winter progresses among colonies, (3) differing distances between breeding and haul-out sites and high quality habitats, and (4) differing long-term -regional trends in sea ice extent can explain the differing population trends observed among elephant seal colonies.
  •  
7.
  • Trenti, Chiara, et al. (författare)
  • Oscillatory shear stress is elevated in patients with bicuspid aortic valve and aortic regurgitation: a 4D flow cardiovascular magnetic resonance cross-sectional study
  • 2023
  • Ingår i: European Heart Journal Cardiovascular Imaging. - : OXFORD UNIV PRESS. - 2047-2404 .- 2047-2412.
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims Patients with bicuspid aortic valve (BAV) and aortic regurgitation have higher rate of aortic complications compared with patients with BAV and stenosis, as well as BAV without valvular disease. Aortic regurgitation alters blood haemodynamics not only in systole but also during diastole. We therefore sought to investigate wall shear stress (WSS) during the whole cardiac cycle in BAV with aortic regurgitation.Methods and results Fifty-seven subjects that underwent 4D flow cardiovascular magnetic resonance imaging were included: 13 patients with BAVs without valve disease, 14 BAVs with aortic regurgitation, 15 BAVs with aortic stenosis, and 22 normal controls with tricuspid aortic valve. Peak and time averaged WSS in systole and diastole and the oscillatory shear index (OSI) in the ascending aorta were computed. Students t-tests were used to compare values between the four groups where the data were normally distributed, and the non-parametric Wilcoxon rank sum tests were used otherwise. BAVs with regurgitation had similar peak and time averaged WSS compared with the patients with BAV without valve disease and with stenosis, and no regions of elevated WSS were found. BAV with aortic regurgitation had twice as high OSI as the other groups (P <= 0.001), and mainly in the outer mid-to-distal ascending aorta.Conclusion OSI uniquely characterizes altered WSS patterns in BAVs with aortic regurgitation, and thus could be a haemodynamic marker specific for this specific group that is at higher risk of aortic complications. Future longitudinal studies are needed to verify this hypothesis. Graphical Abstract Patients with bicuspid aortic valve and aortic regurgitation present with regions of elevated oscillatory shear index in the ascending aorta, namely in the outer mid-to-distal segments. The 2D map represents segments with higher oscillatory shear index for a group of patients with bicuspid aortic valve and aortic regurgitation compared with patients with bicuspid aortic valve without valve disease. I, inner edge of ascending aorta, identified based on the inner insertion of the aortic annulus; O, outer edge; R, right edge; L, left edge.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy