SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Feiden Gregory 1986 ) "

Sökning: WFRF:(Feiden Gregory 1986 )

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boyajian, T., et al. (författare)
  • Stellar diameters and temperatures - VI. High angular resolution measurements of the transiting exoplanet host stars HD 189733 and HD 209458 and implications for models of cool dwarfs
  • 2015
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 447:1, s. 846-857
  • Tidskriftsartikel (refereegranskat)abstract
    • We present direct radii measurements of the well-known transiting exoplanet host stars HD 189733 and HD 209458 using the CHARA Array interferometer. We find the limb-darkened angular diameters to be thetaLD = 0.3848 +/- 0.0055 and 0.2254 +/- 0.0072 milliarcsec for HD 189733 and HD 209458, respectively. HD 189733 and HD 209458 are currently the only two transiting exoplanet systems where detection of the respective planetary companion's orbital motion from high resolution spectroscopy has revealed absolute masses for both star and planet. We use our new measurements together with the orbital information from radial velocity and photometric time series data, Hipparcos distances, and newly measured bolometric fluxes to determine the stellar effective temperatures (Teff = 4875 +/- 43, 6093 +/- 103 K), stellar linear radii (R* = 0.805 +/- 0.016, 1.203 +/- 0.061 Rsun), mean stellar densities (rho* = 1.62 +/- 0.11, 0.58 +/- 0.14 rhosun), planetary radii (Rp = 1.216 +/- 0.024, 1.451 +/- 0.074 RJup), and mean planetary densities (rhop = 0.605 +/- 0.029, 0.196 +/- 0.033 rhoJup) for HD 189733 b and HD 209458 b, respectively. The stellar parameters for HD 209458, a F9 dwarf, are consistent with indirect estimates derived from spectroscopic and evolutionary modeling. However, we find that models are unable to reproduce the observational results for the K2 dwarf, HD 189733. We show that, for stellar evolutionary models to match the observed stellar properties of HD 189733, adjustments lowering the solar-calibrated mixing length parameter from 1.83 to 1.34 need to be employed.
  •  
2.
  • Brogaard, K., et al. (författare)
  • The blue straggler V106 in NGC 6791 : a prototype progenitor of old single giants masquerading as young
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 481:4, s. 5062-5072
  • Tidskriftsartikel (refereegranskat)abstract
    • We determine the properties of the binary star V106 in the old open cluster NGC 6791. We identify the system to be a blue straggler cluster member by using a combination of ground-based and Kepler photometry and multi-epoch spectroscopy. The properties of the primary component are found to be M-p similar to 1.67 M-circle dot, more massive than the cluster turn-off, with R-p similar to 1.91 R-circle dot and T-eff = 7110 +/- 100 K. The secondary component is highly oversized and overluminous for its low mass with M-s similar to 0.182 M-circle dot, R-s similar to 0.864 R-circle dot, and T-eff = 6875 +/- 200 K. We identify this secondary star as a bloated (proto) extremely low-mass helium white dwarf. These properties of V106 suggest that it represents a typical Algol-paradox system and that it evolved through a mass-transfer phase, which provides insight into its past evolution. We present a detailed binary stellar evolution model for the formation of V106 using the MESA code and find that the mass-transfer phase only ceased about 40 Myr ago. Due to the short orbital period (P = 1.4463 d), another mass-transfer phase is unavoidable once the current primary star evolves towards the red giant phase. We argue that V106 will evolve through a common-envelope phase within the next 100 Myr and merge to become a single overmassive giant. The high mass will make it appear young for its true age, which is revealed by the cluster properties. Therefore, V106 is potentially a prototype progenitor of old field giants masquerading as young.
  •  
3.
  • Feiden, Gregory, 1986-, et al. (författare)
  • Do Magnetic Fields Actually Inflate Low-Mass Stars?
  • 2013
  • Ingår i: International Astronomical Union Symposium 302.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Magnetic fields have been hypothesized to inflate the radii of low-mass stars---defined as less than 0.8 solar masses---in detached eclipsing binaries (DEBs). We evaluate this hypothesis using the magnetic Dartmouth stellar evolution code. Results suggest that magnetic suppression of thermal convection can inflate low-mass stars that possess a radiative core and convective outer envelope. A scaling relation between X-ray luminosity and surface magnetic flux indicates that model surface magnetic field strength predictions are consistent with observations. This supports the notion that magnetic fields may be inflating these stars. However, magnetic models are unable to reproduce radii of fully convective stars in DEBs. Instead, we propose that model discrepancies below the fully convective boundary are related to metallicity.
  •  
4.
  • Feiden, Gregory, 1986- (författare)
  • Eclipsing binary systems as tests of low-mass stellar evolution theory
  • 2015
  • Ingår i: Living Together. - 9781583818770 - 9781583818763 ; , s. 137-152
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Stellar fundamental properties (masses, radii, effective temperatures) can be extracted from observations of eclipsing binary systems with remarkable precision, often better than 2%. Such precise measurements afford us the opportunity to confront the validity of basic predictions of stellar evolution theory, such as the mass-radius relationship. A brief historical overview of confrontations between stellar models and data from eclipsing binaries is given, highlighting key results and physical insight that have led directly to our present understanding. The current paradigm that standard stellar evolution theory is insufficient to describe the most basic relation, that of a star's mass to its radius, along the main sequence is then described. Departures of theoretical expectations from empirical data, however, provide a rich opportunity to explore various physical solutions, improving our understanding of important stellar astrophysical processes.
  •  
5.
  • Feiden, Gregory, 1986-, et al. (författare)
  • Magnetic Field Induced Radius Inflation of Low-Mass Stars
  • 2013
  • Ingår i: Binary 2013: Setting a new standard in the analysis of binary stars.. - : EDP Sciences.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • We present results obtained using the magnetic Dartmouth stellar evolution code that address the possibility that magnetic fields are inflating low-mass stars in detached eclipsing binaries. While it seems plausible that magnetic fields are inflating stars with radiative cores, the level of inflation observed among fully convective stars appears too large to be explained by magnetic fields. We provide an alternative explanation, stellar metallicity, and propose observations that can help further constrain stellar models.
  •  
6.
  • Feiden, Gregory, 1986-, et al. (författare)
  • Magnetic Inhibition of Convection and the Fundamental Properties of Low-Mass Stars. : II. Fully Convective Main-Sequence Stars
  • 2014
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 789:1, s. 53-
  • Tidskriftsartikel (refereegranskat)abstract
    • We examine the hypothesis that magnetic fields are inflating the radii of fully convective main-sequence stars in detached eclipsing binaries (DEBs). The magnetic Dartmouth stellar evolution code is used to analyze two systems in particular: Kepler-16 and CM Draconis. Magneto-convection is treated assuming stabilization of convection and also by assuming reductions in convective efficiency due to a turbulent dynamo. We find that magnetic stellar models are unable to reproduce the properties of inflated fully convective main-sequence stars, unless strong interior magnetic fields in excess of 10 MG are present. Validation of the magnetic field hypothesis given the current generation of magnetic stellar evolution models therefore depends critically on whether the generation and maintenance of strong interior magnetic fields is physically possible. An examination of this requirement is provided. Additionally, an analysis of previous studies invoking the influence of star spots is presented to assess the suggestion that star spots are inflating stars and biasing light curve analyses toward larger radii. From our analysis, we find that there is not yet sufficient evidence to definitively support the hypothesis that magnetic fields are responsible for the observed inflation among fully convective main-sequence stars in DEBs.
  •  
7.
  • Feiden, Gregory, 1986-, et al. (författare)
  • Magnetic Inhibition of Convection and the Fundamental Properties of Low-Mass Stars. I. Stars with a Radiative Core
  • 2013
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 779:2, s. 183-
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic fields are hypothesized to inflate the radii of low-mass stars---defined as less massive than 0.8M⊙---in detached eclipsing binaries (DEBs). We investigate this hypothesis using the recently introduced magnetic Dartmouth stellar evolution code. In particular, we focus on stars thought to have a radiative core and convective outer envelope by studying in detail three individual DEBs: UV Psc, YY Gem, and CU Cnc. The results suggest that the stabilization of thermal convection by a magnetic field is a plausible explanation for the observed model-radius discrepancies. However, surface magnetic field strengths required by the models are significantly stronger than those estimated from the observed coronal X-ray emission. Agreement between model predicted surface magnetic field strengths and those inferred from X-ray observations can be found by assuming that the magnetic field sources its energy from convection. This approach makes the transport of heat by convection less efficient and is akin to reduced convective mixing length methods used in other studies. Predictions for the metallicity and magnetic field strengths of the aforementioned systems are reported. We also develop an expression relating a reduction in the convective mixing length to a magnetic field strength in units of the equipartition value. Our results are compared with those from previous investigations to incorporate magnetic fields to explain the low-mass DEB radius inflation. Finally, we explore how the effects of magnetic fields might affect mass determinations using asteroseismic data and the implication of magnetic fields on exoplanet studies.
  •  
8.
  • Feiden, Gregory, 1986-, et al. (författare)
  • Revised age for CM Draconis and WD 1633+572 : Toward a resolution of model-observation radius discrepancies
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 571, s. A70-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report an age revision for the low-mass detached eclipsing binary CM Draconis and its common proper motion companion, WD 1633+572. An age of 8.5 ± 3.5 Gyr is found by combining an age estimate for the lifetime of WD 1633+572 and an estimate from galactic space motions. The revised age is greater than a factor of two older than previous estimates. Our results provide consistency between the white dwarf age and the system's galactic kinematics, which reveal the system is a highly probable member of the galactic thick disk. We find the probability that CM Draconis and WD 1633+572 are members of the thick disk is 8500 times greater than the probability that they are members of the thin disk and 170 times greater than the probability they are halo interlopers. If CM Draconis is a member of the thick disk, it is likely enriched in α-elements compared to iron by at least 0.2 dex relative to the Sun. This leads to the possibility that previous studies under-estimate the [Fe/H] value, suggesting the system has a near-solar [Fe/H]. Implications for the long-standing discrepancies between the radii of CM Draconis and predictions from stellar evolution theory are discussed. We conclude that CM Draconis is only inflated by about 2% compared to stellar evolution predictions.
  •  
9.
  • Feiden, Gregory, 1986- (författare)
  • Stellar Evolution Models of Young Stars : Progress and Limitations
  • 2015
  • Ingår i: Young Stars & Planets Near The Sun. - 9781107138162 ; , s. 79-84
  • Konferensbidrag (refereegranskat)abstract
    • Stellar evolution models are a cornerstone of young star astrophysics, which necessitates that they yield accurate and reliable predictions of stellar properties. Here, I review the current performance of stellar evolution models against young astrophysical benchmarks and highlight recent progress incorporating non-standard physics, such as magnetic field and starspots, to explain observed deficiencies. While addition of these physical processes leads to improved agreement between models and observations, there are several fundamental limitations in our understanding about how these physical processes operate. These limitations inhibit our ability to form a coherent picture of the essential physics needed to accurately compute young stellar models, but provide rich avenues for further exploration.
  •  
10.
  • Malo, L., et al. (författare)
  • BANYAN. IV. Fundamental parameters of low-mass star candidates in nearby young stellar kinematic groups - Isochronal Age determination using Magnetic evolutionary models
  • 2014
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 792:1, s. 37-
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on high resolution optical spectra obtained with ESPaDOnS at CFHT, we determine fundamental parameters (\Teff, R, \Lbol, \logg\ and metallicity) for 59 candidate members of nearby young kinematic groups. The candidates were identified through the BANYAN Bayesian inference method of \citet{2013malo}, which takes into account the position, proper motion, magnitude, color, radial velocity and parallax (when available) to establish a membership probability. The derived parameters are compared to Dartmouth Magnetic evolutionary models and to field stars with the goal to constrain the age of our candidates. We find that, in general, low-mass stars in our sample are more luminous and have inflated radii compared to older stars, a trend expected for pre-main sequence stars. The Dartmouth Magnetic evolutionary models show a good fit to observations of field K and M stars assuming a magnetic field strength of a few kG, as typically observed for cool stars. Using the low-mass members of βPictoris moving group, we have re-examined the age inconsistency problem between Lithium Depletion age and isochronal age (Hertzspring-Russell diagram). We find that the inclusion of the magnetic field in evolutionary models increase the isochronal age estimates for the K5V-M5V stars. Using these models and field strengths, we derive an average isochronal age between 15 and 28 Myr and we confirm a clear Lithium Depletion Boundary from which an age of 26±3~Myr is derived, consistent with previous age estimates based on this method.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy