SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Feller G.) "

Sökning: WFRF:(Feller G.)

  • Resultat 1-10 av 38
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Leisawitz, David, et al. (författare)
  • The origins space telescope
  • 2019
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 11115
  • Konferensbidrag (refereegranskat)abstract
    • The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid-and far-infrared wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of Herschel, the largest telescope flown in space to date. After a 3 1/2 year study, the Origins Science and Technology Definition Team will recommend to the Decadal Survey a concept for Origins with a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (MISC-T) will measure the spectra of transiting exoplanets in the 2.8-20 μm wavelength range and offer unprecedented sensitivity, enabling definitive biosignature detections. The Far-IR Imager Polarimeter (FIP) will be able to survey thousands of square degrees with broadband imaging at 50 and 250 μm. The Origins Survey Spectrometer (OSS) will cover wavelengths from 25-588 μm, make wide-area and deep spectroscopic surveys with spectral resolving power R ∼ 300, and pointed observations at R ∼ 40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The telescope has a Spitzer-like architecture and requires very few deployments after launch. The cryo-thermal system design leverages JWST technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins' natural backgroundlimited sensitivity.
  •  
2.
  • Leisawitz, David, et al. (författare)
  • Origins Space Telescope: Baseline mission concept
  • 2021
  • Ingår i: Journal of Astronomical Telescopes, Instruments, and Systems. - 2329-4221 .- 2329-4124. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the Universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid-and far-infrared (IR) wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of the Herschel Space Observatory, the largest telescope flown in space to date. We describe the baseline concept for Origins recommended to the 2020 US Decadal Survey in Astronomy and Astrophysics. The baseline design includes a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (Mid-Infrared Spectrometer and Camera Transit spectrometer) will measure the spectra of transiting exoplanets in the 2.8 to 20 μm wavelength range and offer unprecedented spectrophotometric precision, enabling definitive exoplanet biosignature detections. The far-IR imager polarimeter will be able to survey thousands of square degrees with broadband imaging at 50 and 250 μm. The Origins Survey Spectrometer will cover wavelengths from 25 to 588 μm, making wide-area and deep spectroscopic surveys with spectral resolving power R ∼ 300, and pointed observations at R ∼ 40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The architecture is similar to that of the Spitzer Space Telescope and requires very few deployments after launch, while the cryothermal system design leverages James Webb Space Telescope technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins' natural background-limited sensitivity.
  •  
3.
  • Leisawitz, David, et al. (författare)
  • The Origins Space Telescope: Mission concept overview
  • 2018
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 10698
  • Konferensbidrag (refereegranskat)abstract
    • Downloading of the abstract is permitted for personal use only. The Origins Space Telescope (OST) will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did the universe evolve in response to its changing ingredients? How common are life-bearing planets? To accomplish its scientific objectives, OST will operate at mid- and far-infrared wavelengths and offer superlative sensitivity and new spectroscopic capabilities. The OST study team will present a scientifically compelling, executable mission concept to the 2020 Decadal Survey in Astrophysics. To understand the concept solution space, our team studied two alternative mission concepts. We report on the study approach and describe both of these concepts, give the rationale for major design decisions, and briefly describe the mission-enabling technology.
  •  
4.
  • Barucci, M. A., et al. (författare)
  • Detection of exposed H2O ice on the nucleus of comet 67P/Churyumov-Gerasimenko as observed by Rosetta OSIRIS and VIRTIS instruments
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 595
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Since the orbital insertion of the Rosetta spacecraft, comet 67P/Churyumov-Gerasimenko (67P) has been mapped by OSIRIS camera and VIRTIS spectro-imager, producing a huge quantity of images and spectra of the comet's nucleus. Aims. The aim of this work is to search for the presence of H2O on the nucleus which, in general, appears very dark and rich in dehydrated organic material. After selecting images of the bright spots which could be good candidates to search for H2O ice, taken at high resolution by OSIRIS, we check for spectral cubes of the selected coordinates to identify these spots observed by VIRTIS. Methods. The selected OSIRIS images were processed with the OSIRIS standard pipeline and corrected for the illumination conditions for each pixel using the Lommel-Seeliger disk law. The spots with higher I/F were selected and then analysed spectrophotometrically and compared with the surrounding area. We selected 13 spots as good targets to be analysed by VIRTIS to search for the 2 mu m absorption band of water ice in the VIRTIS spectral cubes. Results. Out of the 13 selected bright spots, eight of them present positive H2O ice detection on the VIRTIS data. A spectral analysis was performed and the approximate temperature of each spot was computed. The H2O ice content was confirmed by modeling the spectra with mixing (areal and intimate) of H2O ice and dark terrain, using Hapke's radiative transfer modeling. We also present a detailed analysis of the detected spots.
  •  
5.
  • Figueroa, D., et al. (författare)
  • Return to sport soccer after anterior cruciate ligament reconstruction: ISAKOS consensus
  • 2022
  • Ingår i: Journal of ISAKOS. - : Elsevier BV. - 2059-7754. ; 7:6, s. 150-161
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Many factors can affect the return to pivoting sports, after an Anterior Cruciate Ligament Reconstruction. Prehabilitation, rehabilitation, surgical and psychological aspects play an essential role in the decision to return to sports. The purpose of this study is to reach an international consensus about the best conditions for returning to sports in soccer—one of the most demanding level I pivoting sports after anterior cruciate ligament (ACL) reconstruction. Methods: 34 International experts in the management of ACL injuries, representing all the Continents were convened and participated in a process based on the Delphi method to achieve a consensus. 37 statements related to ACL reconstruction were reviewed by the experts in three rounds of surveys in complete anonymity. The statements were prepared by the working group based on previous literature or systematic reviews. Rating agreement through a Likert Scale: strongly agree, agree, neither agree or disagree, disagree and strongly disagree was used. To define consensus, it was established that the assertions should achieve a 75% of agreement or disagreement. Results: Of the 37 statements, 10 achieved unanimous consensus, 18 non-unanimous consensus and 9 did not achieve consensus. In the preoperative, the correction of the range of motion deficit, the previous high level of participation in sports and a better knowledge of the injury by the patient and compliance to participate in Rehabilitation were the statements that reached unanimous consensus. During the surgery, the treatment of associated injuries, as well as the use of autografts, and the addition of a lateral extra-articular tenodesis in some particular cases (active young athletes, <25 years old, hyperlaxity, high rotatory laxity and revision cases) obtained also 100% consensus. In the postoperative period, psychological readiness and its validation with scales, adequate physical preparation, as well as not basing the RTSS purely on the time of evolution after surgery, were the factors that reached unanimous Consensus. Conclusions: The consensus statements derived from this international ISAKOS leaders, may assist clinicians in deciding when to return to sports soccer in patients after an ACL reconstruction. Those statements that reached 100% consensus have to be strongly considered in the final decision to RTS soccer. © 2022 The Authors
  •  
6.
  • Pajola, M., et al. (författare)
  • The Agilkia boulders/pebbles size-frequency distributions : OSIRIS and ROLIS joint observations of 67P surface
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S242-S252
  • Tidskriftsartikel (refereegranskat)abstract
    • By using the images acquired by the OSIRIS (Optical, Spectroscopic and Infrared Remote Imaging System) and ROLIS (ROsetta Lander Imaging System) cameras, we derive the size-frequency distribution (SFD) of cometary pebbles and boulders covering the size range 0.05-30.0 m on the Agilkia landing site. The global SFD measured on OSIRIS images, reflects the different properties of the multiple morphological units present on Agilkia, combined with selection effects related to lifting, transport and redeposition. Contrarily, the different ROLIS SFD derived on the smooth and rough units may be related to their different regolith thickness present on Agilkia. In the thicker, smoother layer, ROLIS mainly measures the SFD of the airfall population which almost completely obliterates the signature of underlying boulders up to a size of the order of 1 m. This is well matched by the power-law index derived analysing coma particles identified by the grain analyser Grain Impact Analyser and Dust Accumulator. This result confirms the important blanketing dynamism of Agilkia. The steeper SFD observed in rough terrains from 0.4 to 2 m could point out intrinsic differences between northern and southern dust size distributions, or it may suggest that the underlying boulders 'peek through' the thinner airfall layer in the rough terrain, thereby producing the observed excess in the decimetre size range. Eventually, the OSIRIS SFD performed on the Philae landing unit may be due to water sublimation from a static population of boulders, affecting smaller boulders before the bigger ones, thus shallowing the original SFD.
  •  
7.
  • Davidsson, Björn, et al. (författare)
  • The primordial nucleus of comet 67P/Churyumov-Gerasimenko
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 592
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. We investigate the formation and evolution of comet nuclei and other trans-Neptunian objects (TNOs) in the solar nebula and primordial disk prior to the giant planet orbit instability foreseen by the Nice model. Aims. Our goal is to determine whether most observed comet nuclei are primordial rubble-pile survivors that formed in the solar nebula and young primordial disk or collisional rubble piles formed later in the aftermath of catastrophic disruptions of larger parent bodies. We also propose a concurrent comet and TNO formation scenario that is consistent with observations. Methods. We used observations of comet 67P/Churyumov-Gerasimenko by the ESA Rosetta spacecraft, particularly by the OSIRIS camera system, combined with data from the NASA Stardust sample-return mission to comet 81P/Wild 2 and from meteoritics; we also used existing observations from ground or from spacecraft of irregular satellites of the giant planets, Centaurs, and TNOs. We performed modeling of thermophysics, hydrostatics, orbit evolution, and collision physics. Results. We find that thermal processing due to short-lived radionuclides, combined with collisional processing during accretion in the primordial disk, creates a population of medium-sized bodies that are comparably dense, compacted, strong, heavily depleted in supervolatiles like CO and CO2; they contain little to no amorphous water ice, and have experienced extensive metasomatism and aqueous alteration due to liquid water. Irregular satellites Phoebe and Himalia are potential representatives of this population. Collisional rubble piles inherit these properties from their parents. Contrarily, comet nuclei have low density, high porosity, weak strength, are rich in supervolatiles, may contain amorphous water ice, and do not display convincing evidence of in situ metasomatism or aqueous alteration. We outline a comet formation scenario that starts in the solar nebula and ends in the primordial disk, that reproduces these observed properties, and additionally explains the presence of extensive layering on 67P/Churyumov-Gerasimenko (and on 9P/Tempel 1 observed by Deep Impact), its bi-lobed shape, the extremely slow growth of comet nuclei as evidenced by recent radiometric dating, and the low collision probability that allows primordial nuclei to survive the age of the solar system. Conclusions. We conclude that observed comet nuclei are primordial rubble piles, and not collisional rubble piles. We argue that TNOs formed as a result of streaming instabilities at sizes below similar to 400 km and that similar to 350 of these grew slowly in a low-mass primordial disk to the size of Triton, Pluto, and Eris, causing little viscous stirring during growth. We thus propose a dynamically cold primordial disk, which prevented medium-sized TNOs from breaking into collisional rubble piles and allowed the survival of primordial rubble-pile comets. We argue that comets formed by hierarchical agglomeration out of material that remained after TNO formation, and that this slow growth was a necessity to avoid thermal processing by short-lived radionuclides that would lead to loss of supervolatiles, and that allowed comet nuclei to incorporate similar to 3 Myr old material from the inner solar system.
  •  
8.
  • El-Maarry, M. Ramy, et al. (författare)
  • Surface changes on comet 67P/Churyumov-Gerasimenko suggest a more active past
  • 2017
  • Ingår i: Science. - : AMER ASSOC ADVANCEMENT SCIENCE. - 0036-8075 .- 1095-9203. ; 355:6332, s. 1392-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Rosetta spacecraft spent similar to 2 years orbiting comet 67P/Churyumov-Gerasimenko, most of it at distances that allowed surface characterization and monitoring at submeter scales. From December 2014 to June 2016, numerous localized changes were observed, which we attribute to cometary-specific weathering, erosion, and transient events driven by exposure to sunlight and other processes. While the localized changes suggest compositional or physical heterogeneity, their scale has not resulted in substantial alterations to the comet's landscape. This suggests that most of the major landforms were created early in the comet's current orbital configuration. They may even date from earlier if the comet had a larger volatile inventory, particularly of CO or CO2 ices, or contained amorphous ice, which could have triggered activity at greater distances from the Sun.
  •  
9.
  • Feller, C., et al. (författare)
  • Decimetre-scaled spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from OSIRIS observations
  • 2016
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 462, s. S287-S303
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of the photometric and spectrophotometric properties of the 67P/Churyumov-Gerasimenko nucleus derived with the Optical, Spectroscopic and Infrared Remote Imaging System instrument during the closest fly-by over the comet, which took place on 2015 February 14 at a distance of similar to 6 km from the surface. Several images covering the 0 degrees-33 degrees. phase angle range were acquired, and the spatial resolution achieved was 11 cm pixel(-1). The flown-by region is located on the big lobe of the comet, near the borders of the Ash, Apis and Imhotep regions. Our analysis shows that this region features local heterogeneities at the decimetre scale. We observed difference of reflectance up to 40 per cent between bright spots and sombre regions, and spectral slope variations up to 50 per cent. The spectral reddening effect observed globally on the comet surface by Fornasier et al. (2015) is also observed locally on this region, but with a less steep behaviour. We note that numerous metre-sized boulders, which exhibit a smaller opposition effect, also appear spectrally redder than their surroundings. In this region, we found no evidence linking observed bright spots to exposed water-ice-rich material. We fitted our data set using the Hapke 2008 photometric model. The region overflown is globally as dark as the whole nucleus (geometric albedo of 6.8 per cent) and it has a high porosity value in the uppermost layers (86 per cent). These results of the photometric analysis at a decimetre scale indicate that the photometric properties of the flown-by region are similar to those previously found for the whole nucleus.
  •  
10.
  • Fornasier, S., et al. (författare)
  • Rosetta's comet 67P/Churyumov-Gerasimenko sheds its dusty mantle to reveal its icy nature
  • 2016
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 354:6319, s. 1566-1570
  • Tidskriftsartikel (refereegranskat)abstract
    • The Rosetta spacecraft has investigated comet 67P/Churyumov-Gerasimenko from large heliocentric distances to its perihelion passage and beyond. We trace the seasonal and diurnal evolution of the colors of the 67P nucleus, finding changes driven by sublimation and recondensation of water ice. The whole nucleus became relatively bluer near perihelion, as increasing activity removed the surface dust, implying that water ice is widespread underneath the surface. We identified large (1500 square meters) ice-rich patches appearing and then vanishing in about 10 days, indicating small-scale heterogeneities on the nucleus. Thin frosts sublimating in a few minutes are observed close to receding shadows, and rapid variations in color are seen on extended areas close to the terminator. These cyclic processes are widespread and lead to continuously, slightly varying surface properties.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 38
Typ av publikation
tidskriftsartikel (36)
konferensbidrag (2)
Typ av innehåll
refereegranskat (37)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Feller, C. (24)
Sierks, H. (23)
Knollenberg, J. (23)
Thomas, N (21)
Barbieri, C. (21)
Tubiana, C. (21)
visa fler...
Rodrigo, R. (21)
Koschny, D. (21)
Rickman, Hans (21)
Bertaux, J. -L (21)
Bertini, I. (21)
Cremonese, G. (21)
Da Deppo, V. (21)
Fornasier, S. (21)
Fulle, M. (21)
Groussin, O. (21)
Hviid, S. F. (21)
Jorda, L. (21)
Lazzarin, M. (21)
Marzari, F. (21)
Oklay, N. (21)
Vincent, J. -B (20)
Barucci, M. A. (20)
Debei, S. (20)
De Cecco, M. (20)
Keller, H. U. (20)
Kuehrt, E. (20)
Naletto, G. (20)
Guettler, C. (19)
Gutierrez, P. J. (19)
Mottola, S. (19)
Lamy, P. L. (17)
Ip, W. -H (17)
Pajola, M. (17)
Deller, J. (16)
Kuppers, M. (16)
A'Hearn, M. F. (15)
Hofmann, M. (15)
Kramm, J. -R (14)
Shi, X. (13)
Kovacs, G (13)
Preusker, F. (13)
Pommerol, A. (13)
Davidsson, B. (12)
Lara, L. M. (12)
Scholten, F. (12)
Agarwal, J. (12)
Hasselmann, P. H. (12)
Lopez Moreno, J. J. (11)
Deshapriya, J. D. P. (10)
visa färre...
Lärosäte
Uppsala universitet (22)
Karolinska Institutet (7)
Göteborgs universitet (5)
Linköpings universitet (3)
Chalmers tekniska högskola (3)
Luleå tekniska universitet (2)
visa fler...
Stockholms universitet (2)
Umeå universitet (1)
visa färre...
Språk
Engelska (37)
Odefinierat språk (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (27)
Medicin och hälsovetenskap (7)
Teknik (2)
Samhällsvetenskap (1)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy