SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fenske Markus) "

Sökning: WFRF:(Fenske Markus)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dagar, Janardan, et al. (författare)
  • Compositional and Interfacial Engineering Yield High-Performance and Stable p-i-n Perovskite Solar Cells and Mini-Modules
  • 2021
  • Ingår i: ACS applied materials & interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 13:11, s. 13022-13033
  • Tidskriftsartikel (refereegranskat)abstract
    • Through the optimization of the perovskite precursor composition and interfaces to selective contacts, we achieved a p-i-n-type perovskite solar cell (PSC) with a 22.3% power conversion efficiency (PCE). This is a new performance record for a PSC with an absorber bandgap of 1.63 eV. We demonstrate that the high device performance originates from a synergy between (1) an improved perovskite absorber quality when introducing formamidinium chloride (FACl) as an additive in the "triple cation" Cs0.05FA0.79MA0.16PbBr0.51I2.49 (Cs-MAFA) perovskite precursor ink, (2) an increased open-circuit voltage, VOC, due to reduced recombination losses when using a lithium fluoride (LiF) interfacial buffer layer, and (3) high-quality hole-selective contacts with a self-assembled monolayer (SAM) of [2-(9H-carbazol-9-yl)ethyl]phosphonic acid (2PACz) on ITO electrodes. While all devices exhibit a high performance after fabrication, as determined from current-density voltage, J-V, measurements, substantial differences in device performance become apparent when considering longer-term stability data. A reduced long-term stability of devices with the introduction of a LiF interlayer is compensated for by using FACl as an additive in the metal-halide perovskite thin-film deposition. Optimized devices maintained about 80% of the initial average PCE during maximum power point (MPP) tracking for >700 h. We scaled the optimized device architecture to larger areas and achieved fully laser patterned series-interconnected mini-modules with a PCE of 19.4% for a 2.2 cm2 active area. A robust device architecture and reproducible deposition methods are fundamental for high performance and stable large-area single junction and tandem modules based on PSCs.
  •  
2.
  • Dagar, Janardan, et al. (författare)
  • Stability assessment of p-i-n perovskite photovoltaic mini-modules utilizing different top metal electrodes
  • 2021
  • Ingår i: Micromachines. - : MDPI AG. - 2072-666X. ; 12:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Long-term stability is one of the major challenges for p-i-n type perovskite solar modules (PSMs). Here, we demonstrate the fabrication of fully laser-patterned series interconnected p-i-n perovskite mini-modules, in which either single Cu or Ag layers are compared with Cu/Au metalbilayer top electrodes. According to the scanning electron microscopy measurements, we found that Cu or Ag top electrodes often exhibit flaking of the metal upon P3 (top contact removal) laser patterning. For Cu/Au bilayer top electrodes, metal flaking may cause intermittent short-circuits between interconnected sub-cells during operation, resulting in fluctuations in the maximum power point (MPP). Here, we demonstrate Cu/Au metal-bilayer-based PSMs with an efficiency of 18.9% on an active area of 2.2 cm2 under continuous 1-sun illumination. This work highlights the importance of optimizing the top-contact composition to tackle the operational stability of mini-modules, and could help to improve the feasibility of large-area module deployment for the commercialization of perovskite photovoltaics.
  •  
3.
  •  
4.
  • Fenske, Markus, et al. (författare)
  • Improved Electrical Performance of Perovskite Photovoltaic Mini-Modules through Controlled PbI2 Formation Using Nanosecond Laser Pulses for P3 Patterning
  • 2021
  • Ingår i: Energy Technology. - : Wiley. - 2194-4288 .- 2194-4296. ; 9:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The upscaling of perovskite solar cells to modules requires the patterning of the layer stack in individual cells that are monolithically interconnected in series. This interconnection scheme is composed of three lines, P1–P3, which are scribed using a pulsed laser beam. The P3 scribe is intended to isolate the back contact layer of neighboring cells, but is often affected by undesired effects such as back contact delamination, flaking, and poor electrical isolation. Herein, the influence of the laser pulse duration on the electrical and compositional properties of P3 scribe lines is investigated. The results show that both nanosecond and picosecond laser pulses are suitable for P3 patterning, with the nanosecond pulses leading to a higher open circuit voltage, a higher fill factor, and a higher power conversion efficiency. It is found that the longer pulse duration resultes in a larger amount of PbI2 formed within the P3 line and a thin Br-rich interfacial layer which both effectively passivate defects at the scribe line edges and block charge carrier in its vicinity. Thus, nanosecond laser pulses are preferable for P3 patterning as they promote the formation of beneficial chemical phases, resulting in an improved photovoltaic performance.
  •  
5.
  • Hausen, Jonas, et al. (författare)
  • Fishing for contaminants : identification of three mechanism specific transcriptome signatures using Danio rerio embryos
  • 2018
  • Ingår i: Environmental Science and Pollution Research. - : Springer. - 0944-1344 .- 1614-7499. ; 25:5, s. 4023-4036
  • Tidskriftsartikel (refereegranskat)abstract
    • In ecotoxicology, transcriptomics is an effective way to detect gene expression changes in response to environmental pollutants. Such changes can be used to identify contaminants or contaminant classes and can be applied as early warning signals for pollution. To do so, it is important to distinguish contaminant-specific transcriptomic changes from genetic alterations due to general stress. Here we present a first step in the identification of contaminant class-specific transcriptome signatures. Embryos of zebrafish (Danio rerio) were exposed to three substances (methylmercury, chlorpyrifos and Aroclor 1254, each from 24 to 48 hpf exposed) representing sediment typical contaminant classes. We analyzed the altered transcriptome to detect discriminative genes significantly regulated in reaction to the three applied contaminants. By comparison of the results of the three contaminants, we identified transcriptome signatures and biologically important pathways (using Cytoscape/ClueGO software) that react significantly to the contaminant classes. This approach increases the chance of finding genes that play an important role in contaminant class-specific pathways rather than more general processes.
  •  
6.
  • Li, Jinzhao, et al. (författare)
  • 20.8% Slot-Die Coated MAPbI3 Perovskite Solar Cells by Optimal DMSO-Content and Age of 2-ME Based Precursor Inks
  • 2021
  • Ingår i: Advanced Energy Materials. - : Wiley. - 1614-6832 .- 1614-6840. ; 11:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Solar cells incorporating metal-halide perovskite (MHP) semiconductors are continuing to break efficiency records for solution-processed solar cell devices. Scaling MHP-based devices to larger area prototypes requires the development and optimization of scalable process technology and ink formulations that enable reproducible coating results. It is demonstrated that the power conversion efficiency (PCE) of small-area methylammonium lead iodide (MAPbI3) devices, slot-die coated from a 2-methoxy-ethanol (2-ME) based ink with dimethyl-sulfoxide (DMSO) used as an additive depends on the amount of DMSO and age of the ink formulation. When adding 12 mol% of DMSO, small-area devices of high performance (20.8%) are achieved. The effect of DMSO content and age on the thin film morphology and device performance through in situ X-ray diffraction and small-angle X-ray scattering experiments is rationalized. Adding a limited amount of DMSO prevents the formation of a crystalline intermediate phase related to MAPbI3 and 2-ME (MAPbI3-2-ME) and induces the formation of the MAPbI3 perovskite phase. Higher DMSO content leads to the precipitation of the (DMSO)2MA2Pb3I8 intermediate phase that negatively affects the thin-film morphology. These results demonstrate that rational insights into the ink composition and process control are critical to enable reproducible large-scale manufacturing of MHP-based devices for commercial applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy