SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ferraro Ivan) "

Sökning: WFRF:(Ferraro Ivan)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Bernal, Ximena E., et al. (författare)
  • Empowering Latina scientists
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 363:6429, s. 825-826
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
3.
  • Calamida, Annalisa, et al. (författare)
  • The Not so Simple Stellar System ω Cen. II. Evidence in Support of a Merging Scenario
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 891:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present multiband photometry covering ∼5° × 5° across ω Cen collected with the Dark Energy Camera on the 4 m Blanco telescope, combined with Hubble Space Telescope and Wide Field Imager data for the central regions. The unprecedented photometric accuracy and field coverage allows us to confirm the different spatial distribution of blue and red main-sequence stars, and of red giant branch (RGB) stars with different metallicities. The ratio of the number of blue to red main-sequence stars shows that the blue main-sequence stellar subpopulation has a more extended spatial distribution compared to the red main-sequence one, with the frequency of blue main-sequence stars increasing at a distance of ∼20′ from ω Cen's center. Similarly, the more metal-rich RGB stars show a more extended spatial distribution compared to the more metal-poor ones in the outskirts of the cluster. Moreover, the centers of the distributions of metal-rich and metal-poor RGB stars are shifted in different directions with respect to the geometrical center of ω Cen. We constructed stellar density profiles for the blue and red main-sequence stars; they show that the blue main-sequence stellar subpopulation has a more extended spatial distribution compared to the red main-sequence one in the outskirts of ω Cen, confirming the results based on the number ratio. We also computed the ellipticity profile of ω Cen, which has a maximum value of 0.16 at a distance of ∼8′ from the center, and a minimum of 0.05 at ∼30′; the average ellipticity is ∼0.10. The circumstantial evidence presented in this work suggests a merging scenario for the formation of the peculiar stellar system ω Cen.
  •  
4.
  • Hernández-Neuta, Iván, et al. (författare)
  • Microfluidic magnetic fluidized bed for DNA analysis in continuous flow mode
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Magnetic solid phase substrates for biomolecule manipulation have become a valuable tool for simplification and automation of molecular biology protocols. However, the handling of magnetic particles inside microfluidic chips for miniaturized assays is often challenging due to inefficient mixing, aggregation, and the advanced instrumentation required for effective actuation. Here, we describe the use of a microfluidic magnetic fluidized bed approach that enables dynamic, highly efficient and simplified magnetic bead actuation for DNA processing in a continuous flow platform with minimal technical requirements. We evaluate the performance of this approach by testing the efficiency of individual steps of a DNA assay based on padlock probes and rolling circle amplification (RCA). This assay comprises common nucleic acid analysis principles, such as hybridization, ligation, amplification and restriction digestion. We obtained efficiencies of up to 90% for these reactions and high throughput capabilities, with flow rates up to 5 L/min without compromising performance. The obtained efficiency values using the fluidized bed were superior to a commercially available solution for microfluidic manipulation of magnetic beads. Moreover, to demonstrate the potential of this approach for integration into micro-total analysis systems, we optimized the production of a low-cost polymer based micro arrayand tested its analytical performance for integrated single-molecule digital read-out. Finally, we provide the proof-of-concept for a single-chamber microfluidic chip that combines the fluidized bed with the polymer microarray for a highly simplified and integrated magnetic bead-based DNA analyzer, with potential applications in diagnostic systems.
  •  
5.
  • Hernández-Neuta, Iván, et al. (författare)
  • Microfluidic magnetic fluidized bed for DNA analysis in continuous flow mode
  • 2018
  • Ingår i: Biosensors & bioelectronics. - : Elsevier BV. - 0956-5663 .- 1873-4235. ; 102, s. 531-539
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic solid phase substrates for biomolecule manipulation have become a valuable tool for simplification and automation of molecular biology protocols. However, the handling of magnetic particles inside microfluidic chips for miniaturized assays is often challenging due to inefficient mixing, aggregation, and the advanced instrumentation required for effective actuation. Here, we describe the use of a microfluidic magnetic fluidized bed approach that enables dynamic, highly efficient and simplified magnetic bead actuation for DNA analysis in a continuous flow platform with minimal technical requirements. We evaluate the performance of this approach by testing the efficiency of individual steps of a DNA assay based on padlock probes and rolling circle amplification. This assay comprises common nucleic acid analysis principles, such as hybridization, ligation, amplification and restriction digestion. We obtained efficiencies of up to 90% for these reactions with high throughput processing up to 120 mu L of DNA dilution at flow rates ranging from 1 to 5 mu L/min without compromising performance. The fluidized bed was 20-50% more efficient than a commercially available solution for microfluidic manipulation of magnetic beads. Moreover, to demonstrate the potential of this approach for integration into micro-total analysis systems, we optimized the production of a low-cost polymer based microarray and tested its analytical performance for integrated single-molecule digital read-out. Finally, we provide the proof-of-concept for a single-chamber microfluidic chip that combines the fluidized bed with the polymer microarray for a highly simplified and integrated magnetic bead-based DNA analyzer, with potential applications in diagnostics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy