SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ferraz Natalia Associate Professor 1976 ) "

Sökning: WFRF:(Ferraz Natalia Associate Professor 1976 )

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wu, Lulu (författare)
  • Development of Nanocellulose Materials for Nano-filtration and Microfluidic Cell Culture
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Nanocellulose, cellulose nanofibrils or nanocrystals, is an interesting material for a wide range of applications. It can be obtained from abundant sources (higher plants, bacteria and algae), and presents many advantages to be used in the biomedical field such as biological safety, high surface area, porosity, and tailorable rheological properties. This thesis selected two different areas to explore the use of nanocellulose materials in life sciences: bioprocessing of biological products and cell culture in microfluidic systems. The production of biopharmaceutical products (e.g. plasma-derived proteins) requires bioactive raw materials of animal or human origin, which present a viral risk. Virus contamination is one of the biggest challenges in the bioprocessing of such biological products, with size-exclusion virus filtration signalled as the preferred method. Commercial virus removal filters tend to have relatively low fluxes, which results in expensive industrial processes and the use of filters based on synthetic polymers is associated with environmental burden. When considering the application of microfluidic devices in cell research, the development of cheap and readily available nano- or micro-biomaterials that are easy to process and integrate is expected to advance the understanding of the relationship between cells and the microenvironment.The first part of the thesis focussed on Cladophora algae-derived cellulose nanofibrils virus removal filters (CCF-VFs) and investigated their application in the bioprocessing of plasma-derived proteins and stem cell differentiation medium. The second part explored the use of wood-derived cellulose nanofibrils (CNFs) as a cell culture substrate in microfluidics. Here, a concentric circular patterned CNF substrate was incorporated into a microfluidic chip to study the role of topography and shear stress in guiding the alignment of human umbilical vein endothelial cells (HUVECs). In conclusion, CCF-VFs show great potential to be integrated into the bioprocessing of plasma-derived products to remove viruses. The first evaluation of CCF-VFs in stem cell culture medium filtration showed promising results. Aligned CNFs were successfully integrated into microfluidic chips as a tool to study the role of mechanical cues on cell alignment.
  •  
2.
  • Blasi Romero, Anna (författare)
  • Bioactive nanocellulose materials for the treatment of chronic wounds
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Chronic wounds represent a burden for the healthcare system and significantly affect the quality of life of the patients. There is currently a lack of efficient treatments but new, improved therapeutic approaches are under development. Suggested innovative wound care therapies consist on the topical administration of bioactive compounds aimed at restoring the balance in the wound environment and promoting the healing. However, their effectiveness is limited due to the highly oxidative and proteolytic environment in the chronic wound. In the work presented in this thesis, a series of bioactive nanocellulose-based materials were developed with the aim of addressing some of the present demands in chronic wound care. Wood-derived cellulose nanofibrils (CNFs) were functionalized with selected bioactive molecules expected to endow CNFs with the ability to modulate the chronic wound environment. Different chemical approaches were explored to combine CNFs with the following biomolecules: the amino acid cysteine, the peptide oligoproline and the host defense peptide KR-12. Materials were characterized in terms of chemical structure, degree of substitution and bioactivity.The immobilization of cysteine onto CNFs (cys-CNF) provided the material with radical oxygen species (ROS) scavenging properties and the ability to inhibit protease activity, properties that were related to the presence of free thiol groups on the nanofibers. Storage conditions in an inert atmosphere or in the form of aerogel were proposed to assure the long-term activity of the cys-CNF material.  Investigations on the use of the ROS-sensitive oligoproline to crosslink CNFs provided optimized protocols to maximize peptide substitution and the degree of crosslinking. The oligoproline-CNF materials were sensitive to ROS-mediated cleavage and provided a protective effect to cells exposed to oxidative conditions. Moreover, the feasibility of preparing ROS-responsive drug delivery hydrogels based on the oligoproline-CNF was demonstrated, with indications that tuning the length of the oligoproline peptide could be exploited to tailor the release rate of small proteins.  CNF materials with antibacterial properties and the ability to modulate the response of pro-inflammatory macrophages were obtained by immobilizing KR-12 derivatives onto CNFs. This study highlighted the importance in the selection of the conjugation chemistry to preserve the activity of the peptide once immobilized. To conclude, this work has contributed with valuable strategies to develop bioactive CNF-based materials with the potential of paving the way for advanced solutions in the field of chronic wound care. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy