SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ferreira Javier 1982 ) "

Sökning: WFRF:(Ferreira Javier 1982 )

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ferreira Gonzalez, Javier, 1982- (författare)
  • Textile-enabled Bioimpedance Instrumentation for Personalised Health Monitoring Applications
  • 2013
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • A growing number of factors, including the costs, technological advancements, an ageing population, and medical errors are leading industrialised countries to invest in research on alternative solutions to improving their health care systems and increasing patients’ life quality. Personal Health System (PHS) solutions envision the use of information and communication technologies that enable a paradigm shift from the traditional hospital-centred healthcare delivery model toward a preventive and person-centred approach. PHS offers the means to follow patient health using wearable, portable or implantable systems that offer ubiquitous, unobtrusive bio-data acquisition, allowing remote access to patient status and treatment monitoring.Electrical Bioimpedance (EBI) technology is a non-invasive, quick and relatively affordable technique that can be used for assessing and monitoring different health conditions, e.g., body composition assessments for nutrition. EBI technology combined with state-of-the-art advances in sensor and textile technology are fostering the implementation of wearable bioimpedance monitors that use functional garments for the implementation of personalised healthcare applications.This research studies the development of a portable EBI spectrometer that can use dry textile electrodes for the assessment of body composition for the purposes of clinical uses. The portable bioimpedance monitor has been developed using the latest advances in system-on-chip technology for bioimpedance spectroscopy instrumentation. The obtained portable spectrometer has been validated against commercial spectrometer that performs total body composition assessment using functional textrode garments.The development of a portable Bioimpedance spectrometer using functional garments and dry textile electrodes for body composition assessment has been shown to be a feasible option. The availability of such measurement systems bring closer the real implementation of personalised healthcare systems.
  •  
2.
  • Ferreira, Javier, 1982-, et al. (författare)
  • A handheld and textile-enabled bioimpedance system for ubiquitous body composition analysis. : An initial functional validation
  • 2016
  • Ingår i: IEEE journal of biomedical and health informatics. - : Institute of Electrical and Electronics Engineers (IEEE). - 2168-2194 .- 2168-2208. ; 21:5
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years, many efforts have been made to promote a healthcare paradigm shift from the traditional reactive hospital-centered healthcare approach towards a proactive, patient-oriented and self-managed approach that could improve service quality and help reduce costs while contributing to sustainability. Managing and caring for patients with chronic diseases accounts over 75% of healthcare costs in developed countries. One of the most resource demanding diseases is chronic kidney disease (CKD), which often leads to a gradual and irreparable loss of renal function, with up to 12% of the population showing signs of different stages of this disease. Peritoneal dialysis and home haemodialysis are life-saving home-based renal replacement treatments that, compared to conventional in-center hemodialysis, provide similar long-term patient survival, less restrictions of life-style, such as a more flexible diet, and better flexibility in terms of treatment options and locations. Bioimpedance has been largely used clinically for decades in nutrition for assessing body fluid distributions. Moreover, bioimpedance methods are used to assess the overhydratation state of CKD patients, allowing clinicians to estimate the amount of fluid that should be removed by ultrafiltration. In this work, the initial validation of a handheld bioimpedance system for the assessment of body fluid status that could be used to assist the patient in home-based CKD treatments is presented. The body fluid monitoring system comprises a custom-made handheld tetrapolar bioimpedance spectrometer and a textile-based electrode garment for total body fluid assessment. The system performance was evaluated against the same measurements acquired using a commercial bioimpedance spectrometer for medical use on several voluntary subjects. The analysis of the measurement results and the comparison of the fluid estimations indicated that both devices are equivalent from a measurement performance perspective, allowing for its use on ubiquitous e-healthcare dialysis solutions.
  •  
3.
  • Ferreira, Javier, 1982-, et al. (författare)
  • AD5933-based Spectrometer for Electrical Bioimpedance Applications
  • 2010
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6596. ; 224:1, s. 012011-
  • Konferensbidrag (refereegranskat)abstract
    • o build an Electrical Bioimpedance (EBI) spectrometer using the Impedance Measurement System-On-Chip AD5933 together with a 4-Electrode Analog Front End (4E-AFE) has been proven practicable. Such small measurement devices can make possible several new applications of EBI technology, especially when combined with functional textiles, which can enable wearable applications for personal health and home monitoring. After the implementation and functional validation of the 4E-AFE-enabled spectrometer, the next natural step is to validate for which EBI applications the 4E-AFE-enabled system is suitable. To test the applicability of this novel spectrometer on several EBI applications, 2R1C equivalent models have been experimentally obtained and impedance spectroscopy measurements have been performed with the system under study and with the SFB7 EBI spectrometer manufactured by ImpediMed. The 2R1C circuit parameters have been estimated with the BioImp software from the spectra obtained with both EBI spectrometers and the estimated values have been compared with the original values used in each circuit model implementation. The obtained results indicated that the 4E-AFE-enabled system cannot beat the performance of the SFB7 in accuracy but it performs better in preciseness. In any case the overall performance indicates that the 4E-AFE-enabled system can perform spectroscopy measurements in the frequency range from 5 to 100 kHz.
  •  
4.
  • Ferreira, Javier, 1982- (författare)
  • Modular textile-enabled bioimpedance system for personalized health monitoring applications
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • A growing number of factors, including costs, technological advancements, ageing populations, and medical errors, are leading industrialized countries to invest in research on alternative solutions to improve their health-care systems and increase patients’ quality of life. Personal health systems (PHS) examplify the use of information and communication technologies that enable a paradigm shift from the traditional hospital-centered healthcare delivery model toward a preventive and person-centered approach. PHS offer the means to monitor a patient’s health using wearable, portable or implantable systems that offer ubiquitous, unobtrusive biodataacquisition, allowing remote monitoring of treatment and access to the patient’s status. Electrical bioimpedance (EBI) technology is non-invasive, quick and relatively affordable technique that can be used for assessing and monitoring different health conditions, e.g., body composition assessments for nutrition. When combined with state-of-the-art advances in sensors and textiles, EBI technologies are fostering the implementation of wearable bioimpedance monitors that use functional garments for personalized healthcare applications. This research work isfocused on the development of wearable EBI-based monitoring systems for ubiquitous health monitoring applications. The monitoring systems are built upon portable monitoring instrumentation and custom-made textile electrode garments.Portable EBI-based monitors have been developed using the latest material technology and advances in system-on-chip technology. For instance, a portable EBI spectrometer has been validated against a commercial spectrometer for total body composition assessment using functional textile electrode garments. The development of wearable EBI-based monitoring units using functional garments and dry textile electrodes for body composition assessment and respiratory monitoring has been shown to be a feasible approach. The availability of these measurement systems indicates progress toward the real implementation of personalized healthcare systems.
  •  
5.
  • Kehoe, Laura, et al. (författare)
  • Make EU trade with Brazil sustainable
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 364:6438, s. 341-
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
6.
  • Marquez, Juan Carlos, 1976-, et al. (författare)
  • Textile electrode straps for wrist-to-ankle bioimpedance measurements for Body Composition Analysis : Initial validation & experimental results
  • 2010
  • Ingår i: 2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC). - : IEEE Engineering in Medicine and Biology Society. - 9781424441235 ; 2010, s. 6385-8
  • Konferensbidrag (refereegranskat)abstract
    • Electrical Bioimpedance (EBI) is one of the non-invasive monitoring technologies that could benefit from the emerging textile based measurement systems. If reliable and reproducible EBI measurements could be done with textile electrodes, that would facilitate the utilization of EBI-based personalized healthcare monitoring applications. In this work the performance of a custom-made dry-textile electrode prototype is tested. Four-electrodes ankle-to-wrist EBI measurements have been taken on healthy subjects with the Impedimed spectrometer SFB7 in the frequency range 5 kHz to 1 MHz. The EBI spectroscopy measurements taken with dry electrodes were analyzed via the Cole and Body Composition Analysis (BCA) parameters, which were compared with EBI measurements obtained with standard electrolytic electrodes. The analysis of the obtained results indicate that even when dry textile electrodes may be used for EBI spectroscopy measurements, the measurements present remarkable differences that influence in the Cole parameter estimation process and in the final production of the BCA parameters. These initial results indicate that more research work must be done to in order to obtain a textile-based electrode that ensures reliable and reproducible EBI spectroscopy measurements.
  •  
7.
  • Seoane, Fernando, 1976-, et al. (författare)
  • Adaptive frequency distribution for Electrical Bioimpedance Spectroscopy measurements
  • 2012
  • Ingår i: Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE. - : IEEE. - 9781424441198 ; 2012, s. 562-5
  • Konferensbidrag (refereegranskat)abstract
    • This paper presents a novel frequency distribution scheme intended to provide more accurate estimations of Cole parameters. Nowadays a logarithmic frequency distribution is mostly used in Electrical Bioimpedance Spectroscopy (EBIS) applications. However it is not optimized following any criterion. Our hypothesis is that an EBIS signal contains more information where the variation of the measurement regarding the frequency is larger; and that there ought to be more measuring frequencies where there is more information. Results show that for EBIS data with characteristic frequencies up to 200 kHz the error obtained with both frequency distribution schemes is similar. However, for EBIS data with higher values of characteristic frequency the error produced when estimating the values from EBIS measurements using an adaptive frequency distribution is smaller. Thus it may useful for EBIS applications with high values of characteristic frequency, e.g. cerebral bioimpedance.
  •  
8.
  • Seoane, Fernando, 1976-, et al. (författare)
  • An analog front-end enables electrical impedance spectroscopy system on-chip for biomedical applications
  • 2008
  • Ingår i: Physiological Measurement. - : Institute of Physics Publishing (IOPP). - 0967-3334 .- 1361-6579. ; 29:6, s. S267-78
  • Tidskriftsartikel (refereegranskat)abstract
    • The increasing number of applications of electrical bioimpedance measurements in biomedical practice, together with continuous advances in textile technology, has encouraged several researchers to make the first attempts to develop portable, even wearable, electrical bioimpedance measurement systems. The main target of these systems is personal and home monitoring. Analog Devices has made available AD5933, a new system-on-chip fully integrated electrical impedance spectrometer, which might allow the implementation of minimum-size instrumentation for electrical bioimpedance measurements. However, AD5933 as such is not suitable for most applications of electrical bioimpedance. In this work, we present a relatively simple analog front-end that adapts AD5933 to a four-electrode strategy, allowing its use in biomedical applications for the first time. The resulting impedance measurements exhibit a very good performance in aspects like load dynamic range and accuracy. This type of minimum-size, system-on-chip-based bioimpedance measurement system would lead researchers to develop and implement light and wearable electrical bioimpedance systems for home and personal health monitoring applications, a new and huge niche for medical technology development.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12
Typ av publikation
konferensbidrag (4)
tidskriftsartikel (4)
bokkapitel (2)
doktorsavhandling (1)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (7)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Seoane, Fernando, 19 ... (7)
Lindecrantz, Kaj, 19 ... (5)
Lindecrantz, Kaj, Pr ... (2)
Rothhaupt, Karl-Otto (1)
Weigend, Maximilian (1)
Müller, Jörg (1)
visa fler...
Farrell, Katharine N ... (1)
Islar, Mine (1)
Krause, Torsten (1)
Uddling, Johan, 1972 (1)
Alexanderson, Helena (1)
Schneider, Christoph (1)
Battiston, Roberto (1)
Lukic, Marko (1)
Pereira, Laura (1)
Riggi, Laura (1)
Cattaneo, Claudio (1)
Jung, Martin (1)
Andresen, Louise C. (1)
Kasimir, Åsa (1)
Wang-Erlandsson, Lan (1)
Sutherland, William ... (1)
Boonstra, Wiebren J. (1)
Vajda, Vivi (1)
Pascual, Unai (1)
Tscharntke, Teja (1)
Brown, Calum (1)
Peterson, Gustaf (1)
Meyer, Carsten (1)
Seppelt, Ralf (1)
Johansson, Maria (1)
Martin, Jean Louis (1)
Seoane, Fernando, Pr ... (1)
Olsson, Urban (1)
Hortal, Joaquin (1)
Buckley, Yvonne (1)
Petrovan, Silviu (1)
Schindler, Stefan (1)
Carvalho, Joana (1)
Amo, Luisa (1)
Machordom, Annie (1)
De Smedt, Pallieter (1)
Lindkvist, Emilie (1)
Matos-Maraví, Pável (1)
Bacon, Christine D. (1)
Silvestro, Daniele (1)
Mascarenhas, André (1)
McPhearson, Timon (1)
Tengö, Maria (1)
Morales, Manuel B. (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (11)
Högskolan i Borås (9)
Chalmers tekniska högskola (5)
Karolinska Institutet (3)
Lunds universitet (1)
Mittuniversitetet (1)
visa fler...
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (12)
Forskningsämne (UKÄ/SCB)
Teknik (12)
Medicin och hälsovetenskap (4)
Naturvetenskap (2)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy