SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ferreyra Vega Sandra) "

Sökning: WFRF:(Ferreyra Vega Sandra)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carstam, Louise, et al. (författare)
  • WHO Grade Loses Its Prognostic Value in Molecularly Defined Diffuse Lower-Grade Gliomas.
  • 2021
  • Ingår i: Frontiers in Oncology. - : Frontiers Media S.A.. - 2234-943X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: While molecular insights to diffuse lower-grade glioma (dLGG) have improved the basis for prognostication, most established clinical prognostic factors come from the pre-molecular era. For instance, WHO grade as a predictor for survival in dLGG with isocitrate dehydrogenase (IDH) mutation has recently been questioned. We studied the prognostic role of WHO grade in molecularly defined subgroups and evaluated earlier used prognostic factors in the current molecular setting.Material and Methods: A total of 253 adults with morphological dLGG, consecutively included between 2007 and 2018, were assessed. IDH mutations, codeletion of chromosomal arms 1p/19q, and cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) deletions were analyzed.Results: There was no survival benefit for patients with WHO grade 2 over grade 3 IDH-mut dLGG after exclusion of tumors with known CDKN2A/B homozygous deletion (n=157) (log-rank p=0.97). This was true also after stratification for oncological postoperative treatment and when astrocytomas and oligodendrogliomas were analyzed separately. In IDH-mut astrocytomas, residual tumor volume after surgery was an independent prognostic factor for survival (HR 1.02; 95% CI 1.01-1.03; p=0.003), but not in oligodendrogliomas (HR 1.02; 95% CI 1.00-1.03; p=0.15). Preoperative tumor size was an independent predictor in both astrocytomas (HR 1.03; 95% CI 1.00-1.05; p=0.02) and oligodendrogliomas (HR 1.05; 95% CI 1.01-1.09; p=0.01). Age was not a significant prognostic factor in multivariable analyses (astrocytomas p=0.64, oligodendrogliomas p=0.08).Conclusion: Our findings suggest that WHO grade is not a robust prognostic factor in molecularly well-defined dLGG. Preoperative tumor size remained a prognostic factor in both IDH-mut astrocytomas and oligodendrogliomas in our cohort, whereas residual tumor volume predicted prognosis in IDH-mut astrocytomas only. The age cutoffs for determining high risk in patients with IDH-mut dLGG from the pre-molecular era are not supported by our results.
  •  
2.
  • Corell, Alba, et al. (författare)
  • Stemness and clinical features in relation to the subventricular zone in diffuse lower-grade glioma : an exploratory study
  • 2022
  • Ingår i: Neuro-Oncology Advances. - : Oxford University Press. - 2632-2498. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The subventricular zone (SVZ) of the human brain is a site of adult stem cell proliferation and a microenvironment for neural stem cells (NSCs). It has been suggested that NSCs in the SVZ are potential cells of origin containing driver mutations of glioblastoma, but their role in the origin of diffuse lower-grade gliomas (dLGGs) is not much studied. Methods We included 188 patients >= 18 years with IDH-mutated dLGG (WHO grades 2-3) histologically diagnosed between 2007 and 2020. Tissue microarrays of tumor samples for patients between 2007 and 2016 were used for immunodetection of Nestin, SOX2, SOX9, KLF4, NANOG, CD133 cMYC, and Ki67. DNA methylation profile was used for stemness index (mDNAsi). Tumor contact with the SVZ was assessed and the distance was computed. Results Overall, 70.2% of the dLGG had SVZ contact. Tumors with SVZ contact were larger (102.4 vs 30.9 mL, P < .01), the patients were older (44.3 vs 40.4 years, P = .04) and more often had symptoms related to increased intracranial pressure (31.8% vs 7.1%, P < .01). The expression of SOX2, SOX9, Nestin, and Ki67 showed intersample variability, but no difference was found between tumors with or without SVZ contact, nor with the actual distance to the SVZ. mDNAsi was similar between groups (P = .42). Conclusions We found no statistical relationship between proximity with the SVZ and mDNAsi or expression of SOX2, SOX9, Nestin, and Ki67 in IDH-mutated dLGG. Our data suggest that the potential impact of SVZ on IDH-mutated dLGG is probably not associated with a more stemness-like tumor profile.
  •  
3.
  • Corell, Alba, et al. (författare)
  • The clinical significance of the T2-FLAIR mismatch sign in grade II and III gliomas: a population-based study.
  • 2020
  • Ingår i: BMC cancer. - : Springer Science and Business Media LLC. - 1471-2407. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The T2-FLAIR mismatch sign is an imaging finding highly suggestive of isocitrate dehydrogenase mutated (IDH-mut) 1p19q non-codeleted (non-codel) gliomas (astrocytomas). In previous studies, it has shown excellent specificity but limited sensitivity for IDH-mut astrocytomas. Whether the mismatch sign is a marker of a clinically relevant subtype of IDH-mut astrocytomas is unknown.We included histopathologically verified supratentorial lower-grade gliomas (LGG) WHO grade II-III retrospectively during the period 2010-2016. In the period 2017-2018, patients with suspected LGG radiologically were prospectively included, and in this cohort other diagnoses than glioma could occur. Clinical, radiological and molecular data were collected. For clinical evaluation we included all patients with IDH-mut astrocytomas. In the 2010-2016 cohort DNA methylation analysis with Infinium MethylationEPIC BeadChip (Illumina) was performed for patients withan IDH-mut astrocytomawith available tissue. We aimed to examine the association of the T2-FLAIRmismatch sign with clinical factors and outcomes. Additionally, we evaluated the diagnostic reliability of the mismatch sign and its relation to methylation profiles.Out of 215 patients with LGG, 135 had known IDH-mutation and 1p19q codeletion status. Fifty patients hadan IDH-mut astrocytoma and 12 of these (24.0%) showed a mismatch sign. The sensitivity and specificity of the mismatch sign for IDH-mut detection were 26.4 and 97.6%, respectively. There were no differences between patients withan IDH-mut astrocytoma with or without mismatch sign when grouped according to T2-FLAIR mismatch sign with respect to baseline characteristics, clinical outcomes and methylation profiles. The overall interrater agreement between neuroradiologist and clinical neurosurgeons for the T2-FLAIR mismatch sign was significant when all 215 MRI examination assessed (κ=0.77, p<0.001, N=215).The T2-FLAIR mismatch sign in patients withan IDH-mut astrocytoma is not associated with clinical presentation or outcome. It seems unlikely that the IDH-mut astrocytomas with mismatch sign represent a specific subentity. Finally, we have validated that the T2-FLAIR mismatch sign is a reliable and specific marker of IDH-mut astrocytomas.
  •  
4.
  • Dénes, Anna, et al. (författare)
  • The clinical value of proneural, classical and mesenchymal protein signatures in WHO 2021 adult-type diffuse lower-grade gliomas.
  • 2023
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 18:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Accumulating evidence shows that mesenchymal transition of glioblastomas is associated with a more aggressive course of disease and therapy resistance. In WHO2021-defined adult-type diffuse gliomas of lower grade (dLGG), the transition of the tumor phenotype over time, has not been studied. Most efforts to correlate proneural, classical or mesenchymal phenotype with outcome in dLGG were made prior to the WHO 2021 classification. Here, we set out to investigate if phenotype predicted survival and tumor recurrence in a clinical cohort of dLGGs, re-classified according to the 2021 WHO criteria.Using a TMA-based approach with five immunohistochemical markers (EGFR, p53, MERTK, CD44 and OLIG2), we investigated 183 primary and 49 recurrent tumors derived from patients with previously diagnosed dLGG. Of the 49 relapses, nine tumors recurred a second time, and one a third time.In total, 71.0% of all tumors could be subtyped. Proneural was most dominant in IDH-mut tumors (78.5%), mesenchymal more common among IDH-wt tumors (63.6%). There was a significant difference in survival between classical, proneural and mesenchymal phenotypes in the total cohort (p<0.001), but not after molecular stratification (IDH-mut: p = 0.220, IDH-wt: p = 0.623). Upon recurrence, proneural was retained in 66.7% of the proneural IDH-mut dLGGs (n = 21), whereas IDH-wt tumors (n = 10) mainly retained or gained mesenchymal phenotype. No significant difference in survival was found between IDH-mut gliomas remaining proneural and those shifting to mesenchymal phenotype (p = 0.347).Subtyping into classical, proneural and mesenchymal phenotypes by five immunohistochemical markers, was possible for the majority of tumors, but protein signatures did not correlate with patient survival in our WHO2021-stratified cohort. At recurrence, IDH-mut tumors mainly retained proneural, while IDH-wt tumors mostly retained or gained mesenchymal signatures. This phenotypic shift, associated with increased aggressiveness in glioblastoma, did not affect survival. Group sizes were, however, too small to draw any firm conclusions.
  •  
5.
  • Ferreyra Vega, Sandra, et al. (författare)
  • DNA methylation profiling for molecular classification of adult diffuse lower-grade gliomas.
  • 2021
  • Ingår i: Clinical Epigenetics. - : Springer Nature. - 1868-7083 .- 1868-7075. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: DNA methylation profiling has facilitated and improved the classification of a wide variety of tumors of the central nervous system. In this study, we investigated the potential utility of DNA methylation profiling to achieve molecular diagnosis in adult primary diffuse lower-grade glioma (dLGG) according to WHO 2016 classification system. We also evaluated whether methylation profiling could provide improved molecular characterization and identify prognostic differences beyond the classical histological WHO grade together with IDH mutation status and 1p/19q codeletion status. All patients diagnosed with dLGG in the period 2007-2016 from the Västra Götaland region in Sweden were assessed for inclusion in the study.RESULTS: A total of 166 dLGG cases were subjected for genome-wide DNA methylation analysis. Of these, 126 (76%) were assigned a defined diagnostic methylation class with a class prediction score ≥ 0.84 and subclass score ≥ 0.50. The assigned methylation classes were highly associated with their IDH mutation status and 1p/19q codeletion status. IDH-wildtype gliomas were further divided into subgroups with distinct molecular features.CONCLUSION: The stratification of the patients by methylation profiling was as effective as the integrated WHO 2016 molecular reclassification at predicting the clinical outcome of the patients. Our study shows that DNA methylation profiling is a reliable and robust approach for the classification of dLGG into molecular defined subgroups, providing accurate detection of molecular markers according to WHO 2016 classification.
  •  
6.
  • Ferreyra Vega, Sandra (författare)
  • DNA methylation profiling of CNS tumors; implications for clinical diagnostics
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Diffuse gliomas and meningiomas are the most common primary tumors of the central nervous system (CNS) in adults and these tumors cause significant morbidity and mortality worldwide. Deregulation of the epigenetic mechanisms, e.g. in the form of aberrant changes of DNA methylation patterns, are important for the formation and development of many diseases including cancer. Genome-wide DNA methylation profiling is an emerging molecular technique that offers a new way for characterization of CNS tumors with potential use in routine clinical diagnostics. In this thesis, we used DNA methylation profiling for evaluation of patient diagnosis and prognosis and further provide new insights into intratumor heterogeneity, highlighting the potential implications that this could bring into the clinical setting. In Paper I, we assessed the value of using DNA methylation profiling as a diagnostic tool for molecular classification of diffuse lower-grade gliomas. We demonstrated that methylation profiling provided accurate diagnostic and prognostic information and enabled a reliable molecular classification of the tumors according to the World Health Organization classification criteria. In Paper II, we studied DNA methylation profiles across distinct regions of glioblastomas and found methylation subclass differences within the tumors as well as variable methylation status of the clinical prognostic and predictive biomarker MGMT. In Paper III, we further explored DNA methylation and chromosomal copy number variability within adult-type diffuse gliomas and meningiomas and shed light on the effect of varying tumor cell content on methylation analyses. Diffuse gliomas and high-grade meningiomas were characterized by spatial methylation and chromosomal heterogeneity after accounting for tumor purity. In addition, we found heterogeneity of the clinical biomarker CDKN2A/B homozygous deletion in IDH-mutant gliomas. In Paper IV, we investigated DNA methylation changes during progression of IDH-mutant gliomas. The tumors accumulated methylation alterations over time, but methylation patterns were mostly maintained upon recurrence. In conclusion, we demonstrated the potential of using DNA methylation profiling for improved CNS tumor diagnostics and prognostics. We further provided a better understanding of the methylation and chromosomal heterogeneity in diffuse gliomas and meningiomas, which could affect the clinical diagnosis and treatment management of these patients.
  •  
7.
  • Ferreyra Vega, Sandra, et al. (författare)
  • Longitudinal DNA methylation analysis of adult-type IDH-mutant gliomas.
  • 2023
  • Ingår i: Acta neuropathologica communications. - : Springer Science and Business Media LLC. - 2051-5960. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Diffuse gliomas are the most prevalent malignant primary brain tumors in adults and remain incurable despite standard therapy. Tumor recurrence is currently inevitable, which contributes to a persistent high morbidity and mortality in these patients. In this study, we examined the genome-wide DNA methylation profiles of primary and recurrent adult-type IDH-mutant gliomas to elucidate DNA methylation changes associated with tumor progression (with or without malignant transformation). We analyzed DNA methylation profiles of 37 primary IDH-mutant gliomas and 42 paired recurrences using the DNA methylation EPIC beadChip array. DNA methylation-based classification reflected the tumor progression over time. We observed a methylation subtype switch in a proportion of IDH-mutant astrocytomas; the primary tumors were subclassified as low-grade astrocytomas, which progressed to high-grade astrocytomas in the recurrent tumors. The CNS WHO grade 4 IDH-mutant astrocytomas did not always resemble methylation subclasses of higher grades. The number of differentially methylated CpG sites increased over time, and astrocytomas accumulated more differentially methylated CpG sites than oligodendrogliomas during tumor progression. Few differentially methylated CpG siteswere shared between patients. We demonstrated that DNA methylation profiles are mostly maintained during IDH-mutant glioma progression, but CpG site-specific methylation alterations can occur.
  •  
8.
  • Ferreyra Vega, Sandra, et al. (författare)
  • Spatial heterogeneity in DNA methylation and chromosomal alterations in diffuse gliomas and meningiomas
  • 2022
  • Ingår i: Modern Pathology. - : Elsevier BV. - 0893-3952. ; 35:11, s. 1551-1561
  • Tidskriftsartikel (refereegranskat)abstract
    • Adult-type diffuse gliomas and meningiomas are the most common primary intracranial tumors of the central nervous system. DNA methylation profiling is a novel diagnostic technique increasingly used also in the clinic. Although molecular heterogeneity is well described in these tumors, DNA methylation heterogeneity is less studied. We therefore investigated the intratumor genetic and epigenetic heterogeneity in diffuse gliomas and meningiomas, with focus on potential clinical implications. We further investigated tumor purity as a source for heterogeneity in the tumors. We analyzed genome-wide DNA methylation profiles generated from 126 spatially separated tumor biopsies from 39 diffuse gliomas and meningiomas. Moreover, we evaluated five methods for measurement of tumor purity and investigated intratumor heterogeneity by assessing DNA methylation-based classification, chromosomal copy number alterations and molecular markers. Our results demonstrated homogeneous methylation-based classification of IDH-mutant gliomas and further corroborates subtype heterogeneity in glioblastoma IDH-wildtype and high-grade meningioma patients after excluding samples with low tumor purity. We detected a large number of differentially methylated CpG sites within diffuse gliomas and meningiomas, particularly in tumors of higher grades. The presence of CDKN2A/B homozygous deletion differed in one out of two patients with IDH-mutant astrocytomas, CNS WHO grade 4. We conclude that diffuse gliomas and high-grade meningiomas are characterized by intratumor heterogeneity, which should be considered in clinical diagnostics and in the assessment of methylation-based and molecular markers.
  •  
9.
  • Kling, Teresia, 1985, et al. (författare)
  • Refinement of prognostication for IDH-mutant astrocytomas using DNA methylation-based classification
  • 2024
  • Ingår i: BRAIN PATHOLOGY. - 1015-6305 .- 1750-3639.
  • Tidskriftsartikel (refereegranskat)abstract
    • The 2021 World Health Organization (WHO) grading system of isocitrate dehydrogenase (IDH)-mutant astrocytomas relies on histological features and the presence of homozygous deletion of the cyclin-dependent kinase inhibitor 2A and 2B (CDKN2A/B). DNA methylation profiling has become highly relevant in the diagnosis of central nervous system (CNS) tumors including gliomas, and it has been incorporated into routine clinical diagnostics in some countries. In this study, we, therefore, examined the value of DNA methylation-based classification for prognostication of patients with IDH-mutant astrocytomas. We analyzed histopathological diagnoses, genome-wide DNA methylation array data, and chromosomal copy number alteration profiles from a cohort of 385 adult-type IDH-mutant astrocytomas, including a local cohort of 127 cases and 258 cases from public repositories. Prognosis based on WHO 2021 CNS criteria (histological grade and CDKN2A/B homozygous deletion status), other relevant chromosomal/gene alterations in IDH-mutant astrocytomas and DNA methylation-based subclassification according to the molecular neuropathology classifier were assessed. We demonstrate that DNA methylation-based classification of IDH-mutant astrocytomas can be used to predict outcome of the patients equally well as WHO 2021 CNS criteria. In addition, methylation-based subclassification enabled the identification of IDH-mutant astrocytoma patients with poor survival among patients with grade 3 tumors and patients with grade 4 tumors with a more favorable outcome. In conclusion, DNA methylation-based subclassification adds prognostic information for IDH-mutant astrocytomas that can further refine the current WHO 2021 grading scheme for these patients.
  •  
10.
  • Schepke, Elizabeth, et al. (författare)
  • DNA methylation profiling improves routine diagnosis of paediatric central nervous system tumours: A prospective population-based study
  • 2022
  • Ingår i: Neuropathology and Applied Neurobiology. - : Wiley. - 0305-1846 .- 1365-2990. ; 48:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Paediatric brain tumours are rare, and establishing a precise diagnosis can be challenging. Analysis of DNA methylation profiles has been shown to be a reliable method to classify central nervous system (CNS) tumours with high accuracy. We aimed to prospectively analyse CNS tumours diagnosed in Sweden, to assess the clinical impact of adding DNA methylation-based classification to standard paediatric brain tumour diagnostics in an unselected cohort. Methods: All CNS tumours diagnosed in children (0-18 years) during 2017-2020 were eligible for inclusion provided sufficient tumour material was available. Tumours were analysed using genome-wide DNA methylation profiling and classified by the MNP brain tumour classifier. The initial histopathological diagnosis was compared with the DNA methylation-based classification. For incongruent results, a blinded re-evaluation was performed by an experienced neuropathologist. Results: Two hundred forty tumours with a histopathology-based diagnosis were profiled. A high-confidence methylation score of 0.84 or more was reached in 78% of the cases. In 69%, the histopathological diagnosis was confirmed, and for some of these also refined, 6% were incongruent, and the re-evaluation favoured the methylation-based classification. In the remaining 3% of cases, the methylation class was non-contributory. The change in diagnosis would have had a direct impact on the clinical management in 5% of all patients. Conclusions: Integrating DNA methylation-based tumour classification into routine clinical analysis improves diagnostics and provides molecular information that is important for treatment decisions. The results from methylation profiling should be interpreted in the context of clinical and histopathological information.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy