SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ferri Julien) "

Sökning: WFRF:(Ferri Julien)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Björklund Svensson, Jonas, et al. (författare)
  • Low-divergence femtosecond X-ray pulses from a passive plasma lens
  • 2021
  • Ingår i: Nature Physics. - : Springer Science and Business Media LLC. - 1745-2481 .- 1745-2473. ; 17:5, s. 639-645
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron and X-ray beams originating from compact laser-wakefield accelerators have very small source sizes that are typically on the micrometre scale. Therefore, the beam divergences are relatively high, which makes it difficult to preserve their high quality during transport to applications. To improve on this, tremendous efforts have been invested in controlling the divergence of the electron beams, but no mechanism for generating collimated X-ray beams has yet been demonstrated experimentally. Here we propose and realize a scheme where electron bunches undergoing focusing in a dense, passive plasma lens can emit X-ray pulses with divergences approaching the incoherent limit. Compared with conventional betatron emission, the divergence of this so-called plasma lens radiation is reduced by more than an order of magnitude in solid angle, while maintaining a similar number of emitted photons per electron. This X-ray source offers the possibility of producing brilliant and collimated few-femtosecond X-ray pulses for ultra-fast science, in particular for studies based on X-ray diffraction and absorption spectroscopy. X-ray pulses with low divergences are produced in a laser-wakefield accelerator by focusing electron bunches in a dense passive plasma lens.
  •  
2.
  • Björklund Svensson, J., et al. (författare)
  • Start-to-end simulations of plasma-wakefield acceleration using the MAX IV Linear Accelerator
  • 2022
  • Ingår i: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - : Elsevier BV. - 0168-9002. ; 1033
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma-wakefield acceleration (PWFA) relies on the interaction between intense particle bunches and plasma for reaching higher accelerating gradients than what is possible with conventional radio-frequency technology. Using ultra-relativistic beam drivers allows for long acceleration lengths and have potential applications such as energy booster stages for synchrotron light sources or linear colliders and generating ultra-high-brightness beams from the background plasma. In this article, we present start-to-end simulations of the MAX IV Linear Accelerator as part of our investigations into the feasibility of using the linac for a PWFA experiment. We find that PWFA appears to be a viable application for the linac. A part of this conclusion is based on our finding that the general properties of the bunch compressor type employed in the MAX IV linac are well-suited for efficient generation of PWFA-optimized bunch current profiles, both for single- and double-bunch beams.
  •  
3.
  • Cantono, Giada, et al. (författare)
  • Laser-driven proton acceleration from ultrathin foils with nanoholes
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322 .- 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Structured solid targets are widely investigated to increase the energy absorption of high-power laser pulses so as to achieve efficient ion acceleration. Here we report the first experimental study of the maximum energy of proton beams accelerated from sub-micrometric foils perforated with holes of nanometric size. By showing the lack of energy enhancement in comparison to standard flat foils, our results suggest that the high contrast routinely achieved with a double plasma mirror does not prevent damaging of the nanostructures prior to the main interaction. Particle-in-cell simulations support that even a short scale length plasma, formed in the last hundreds of femtoseconds before the peak of an ultrashort laser pulse, fills the holes and hinders enhanced electron heating. Our findings reinforce the need for improved laser contrast, as well as for accurate control and diagnostics of on-target plasma formation.
  •  
4.
  • Dubois, Timothy, 1982, et al. (författare)
  • Origins of plateau formation in ion energy spectra under target normal sheath acceleration
  • 2017
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1089-7674 .- 1070-664X. ; 24:12, s. 123114-
  • Tidskriftsartikel (refereegranskat)abstract
    • Target normal sheath acceleration (TNSA) is a method employed in laser–matter interaction experiments to accelerate light ions (usually protons). Laser setups with durations of a few 10 fs and relatively low intensity contrasts observe plateau regions in their ion energy spectra when shooting on thin foil targets with thicknesses of the order of 10 μm. In this paper, we identify a mechanism which explains this phenomenon using one-dimensional particle-in-cell simulations. Fast electrons generated from the laser interaction recirculate back and forth through the target, giving rise to time-oscillating charge and current densities at the target backside. Periodic decreases in the electron density lead to transient disruptions of the TNSA sheath field: peaks in the ion spectra form as a result, which are then spread in energy from a modified potential driven by further electron recirculation. The ratio between the laser pulse duration and the recirculation period (dependent on the target thickness, including the portion of the pre-plasma which is denser than the critical density) determines if a plateau forms in the energy spectra.
  •  
5.
  • Ferri, Julien, 1990, et al. (författare)
  • Effects of oblique incidence and colliding pulses on laser-driven proton acceleration from relativistically transparent ultrathin targets
  • 2020
  • Ingår i: Journal of Plasma Physics. - 0022-3778 .- 1469-7807. ; 86:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of ultrathin solid foils offers optimal conditions for accelerating protons to high energies from laser-matter interactions. When the target is thin enough that relativistic self-induced transparency sets in, all of the target electrons get heated to high energies by the laser, which maximizes the accelerating electric field and therefore the final ion energy. In this work, we first investigate how ion acceleration by ultraintense femtosecond laser pulses in transparent CH2 solid foils is modified when turning from normal to oblique (45 degrees) incidence. Due to stronger electron heating, we find that higher proton energies can be obtained at oblique incidence but in thinner optimum targets. We then show that proton acceleration can be further improved by splitting the laser pulse into two half-pulses focused at opposite incidence angles. An increase by similar to 30% in the maximum proton energy and by a factor of similar to 4 in the high-energy proton charge is reported compared to the reference case of a single normally incident pulse.
  •  
6.
  •  
7.
  • Ferri, Julien, 1990, et al. (författare)
  • Enhanced target normal sheath acceleration using colliding laser pulses
  • 2019
  • Ingår i: Communications Physics. - : Springer Science and Business Media LLC. - 2399-3650. ; 2
  • Tidskriftsartikel (refereegranskat)abstract
    • Laser-solid interaction can lead to the acceleration of protons to tens of MeV. Here, we show that a strong enhancement of this acceleration can be achieved by splitting the laser pulse to two parts of equal energy and opposite incidence angles. Through the use of two- and three-dimensional Particle-In-Cell simulations, we find that the multi-pulse interaction leads to a standing wave pattern at the front side of the target, with an enhanced electric field and a substantial modification of the hot electron generation process. This in turn leads to significant improvement of the proton spectra, with an almost doubling of the accelerated proton energy and five-fold enhancement of the number of protons. The proposed scheme is robust with respect to incidence angles for the laser pulses, providing flexibility to the scheme, which should facilitate its experimental implementation.
  •  
8.
  • Ferri, Julien, 1990, et al. (författare)
  • Enhancement of betatron x rays through asymmetric laser wakefield generated in transverse density gradients
  • 2018
  • Ingår i: Physical Review Accelerators and Beams. - 2469-9888. ; 21:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Laser wakefield acceleration of electrons usually offers an axisymmetry around the laser propagation axis. Thus, the accelerating electrons that are focused on axis often execute small transverse oscillations. In this article, we propose a simple scheme to break this symmetry, which enhances the transverse wiggling of electrons and boosts the betatron radiation emission. Through 3D particle-in-cell simulations, we show that sending the laser with a small angle of incidence on a transverse plasma density gradient generates an asymmetric wakefield. It first provokes injection and then increases the wiggling of the electrons through the transverse shifting of the wakefield axis which occurs when the laser pulse leaves the gradient. Consequently, we show that the radiated energy per unit of charge can increase by a factor >20 when using this scheme, and that the critical energy of the radiation quintuples compared with a reference case without the transverse density gradient.
  •  
9.
  • Ferri, Julien, 1990, et al. (författare)
  • Enhancement of laser-driven ion acceleration in non-periodic nanostructured targets
  • 2020
  • Ingår i: Journal of Plasma Physics. - 0022-3778 .- 1469-7807. ; 86:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Using particle-in-cell simulations, we demonstrate an improvement of the target-normal-sheath acceleration (TNSA) of protons in non-periodically nanostructured targets with micron-scale thickness. Compared to standard flat foils, an increase in the proton cutoff energy by up to a factor of two is observed in foils coated with nanocones or perforated with nanoholes. The latter nano-perforated foils yield the highest enhancement, which we show to be robust over a broad range of foil thicknesses and hole diameters. The improvement of TNSA performance results from more efficient hot-electron generation, caused by a more complex laser-electron interaction geometry and increased effective interaction area and duration. We show that TNSA is optimized for a nanohole distribution of relatively low areal density and that is not required to be periodic, thus relaxing the manufacturing constraints.
  •  
10.
  • Ferri, Julien, et al. (författare)
  • Generation of attosecond electron bunches and x-ray pulses from few-cycle femtosecond laser pulses
  • 2021
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 63:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Laser-plasma electron accelerators can be used to produce high-intensity x-rays, as electrons accelerated in wakefields emit radiation due to betatron oscillations. Such x-ray sources inherit the features of the electron beam; sub-femtosecond electron bunches produce betatron sources of the same duration, which in turn allow probing matter on ultrashort time scales. In this paper we show, via Particle-in-Cell simulations, that attosecond electron bunches can be obtained using low-energy, ultra-short laser beams both in the self-injection and the controlled injection regimes at low plasma densities. However, only in the controlled regime does the electron injection lead to a stable, isolated attosecond electron bunch. Such ultrashort electron bunches are shown to emit attosecond x-ray bursts with high brilliance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy