SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fidler K) "

Sökning: WFRF:(Fidler K)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
2.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Edström, Alexander, et al. (författare)
  • Magnetic properties of (Fe1-xCox)(2)B alloys and the effect of doping by 5d elements
  • 2015
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 92:17
  • Tidskriftsartikel (refereegranskat)abstract
    • We have explored, computationally and experimentally, the magnetic properties of (Fe1-xCox)(2)B alloys. Calculations provide a good agreement with experiment in terms of the saturation magnetization and the magnetocrystalline anisotropy energy with some difficulty in describing Co2B, for which it is found that both full potential effects and electron correlations treated within dynamical mean field theory are of importance for a correct description. The material exhibits a uniaxial magnetic anisotropy for a range of cobalt concentrations between x = 0.1 and x = 0.5. A simple model for the temperature dependence of magnetic anisotropy suggests that the complicated nonmonotonic behavior is mainly due to variations in the band structure as the exchange splitting is reduced by temperature. Using density functional theory based calculations we have explored the effect of substitutionally doping the transition metal sublattice by the whole range of 5d transition metals and found that doping by Re or W elements should significantly enhance the magnetocrystalline anisotropy energy. Experimentally, W doping did not succeed in enhancing the magnetic anisotropy due to formation of other phases. On the other hand, doping by Ir and Re was successful and resulted in magnetic anisotropies that are in agreement with theoretical predictions. In particular, doping by 2.5 at.% of Re on the Fe/Co site shows a magnetocrystalline anisotropy energy which is increased by 50% compared to its parent (Fe0.7Co0.3)(2)B compound, making this system interesting, for example, in the context of permanent magnet replacement materials or in other areas where a large magnetic anisotropy is of importance.
  •  
9.
  •  
10.
  • Horvath, A, et al. (författare)
  • Systematic comparison of HIV-1 Envelope-specific IgG responses induced by different vaccination regimens: Can we steer IgG recognition towards regions of viral vulnerability?
  • 2023
  • Ingår i: Frontiers in immunology. - : Frontiers Media SA. - 1664-3224. ; 13, s. 1075606-
  • Tidskriftsartikel (refereegranskat)abstract
    • Immunogens and vaccination regimens can influence patterns of immune-epitope recognition, steering them towards or away from epitopes of potential viral vulnerability. HIV-1 envelope (Env)-specific antibodies targeting variable region 2 (V2) or 3 (V3) correlated with protection during the RV144 trial, however, it was suggested that the immunodominant V3 region might divert antibody responses away from other relevant sites. We mapped IgG responses against linear Env epitopes in five clinical HIV vaccine trials, revealing a specific pattern of Env targeting for each regimen. Notable V2 responses were only induced in trials administering CRF01_AE based immunogens, but targeting of V3 was seen in all trials, with the soluble, trimeric CN54gp140 protein eliciting robust V3 recognition. Strong V3 targeting was linked to greater overall response, increased number of total recognised antigenic regions, and where present, stronger V2 recognition. Hence, strong induction of V3-specific antibodies did not negatively impact the targeting of other linear epitopes in this study, suggesting that the induction of antibodies against V3 and other regions of potential viral vulnerability need not be necessarily mutually exclusive.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy