SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fieuws S.) "

Sökning: WFRF:(Fieuws S.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Goossens, G A, et al. (författare)
  • Diagnostic accuracy of the Catheter Injection and Aspiration (CINAS) classification for assessing the function of totally implantable venous access devices.
  • 2016
  • Ingår i: Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer. - : Springer Science and Business Media LLC. - 1433-7339. ; 24:2, s. 755-761
  • Tidskriftsartikel (refereegranskat)abstract
    • Intravenous catheters are used for the administration of intravenous therapy and for blood sampling. These devices are considered as well-functioning if both the injection and aspiration are easy. Malfunction is frequently observed and usually vaguely described as occlusion. We developed the CINAS, the Catheter Injection and Aspiration scheme. The CINAS is a catheter function classification tool, which classifies both the injection and the aspiration ability in a uniform way. Each CINAS class consists of a combination of an injection (IN) and an aspiration (AS) code: e.g. IN1AS1 is the CINAS class for a well-functioning catheter. In this series, we aimed to determine the accuracy of the CINAS class reported by nurses, after minimal training, versus a trained researcher, acting as a reference standard.
  •  
5.
  • Marien, E., et al. (författare)
  • Non-small cell lung cancer is characterized by dramatic changes in phospholipid profiles
  • 2015
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 137:7, s. 1539-1548
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-small cell lung cancer (NSCLC) is the leading cause of cancer death globally. To develop better diagnostics and more effective treatments, research in the past decades has focused on identification of molecular changes in the genome, transcriptome, proteome, and more recently also the metabolome. Phospholipids, which nevertheless play a central role in cell functioning, remain poorly explored. Here, using a mass spectrometry (MS)-based phospholipidomics approach, we profiled 179 phospholipid species in malignant and matched non-malignant lung tissue of 162 NSCLC patients (73 in a discovery cohort and 89 in a validation cohort). We identified 91 phospholipid species that were differentially expressed in cancer versus non-malignant tissues. Most prominent changes included a decrease in sphingomyelins (SMs) and an increase in specific phosphatidylinositols (PIs). Also a decrease in multiple phosphatidylserines (PSs) was observed, along with an increase in several phosphatidylethanolamine (PE) and phosphatidylcholine (PC) species, particularly those with 40 or 42 carbon atoms in both fatty acyl chains together. 2D-imaging MS of the most differentially expressed phospholipids confirmed their differential abundance in cancer cells. We identified lipid markers that can discriminate tumor versus normal tissue and different NSCLC subtypes with an AUC (area under the ROC curve) of 0.999 and 0.885, respectively. In conclusion, using both shotgun and 2D-imaging lipidomics analysis, we uncovered a hitherto unrecognized alteration in phospholipid profiles in NSCLC. These changes may have important biological implications and may have significant potential for biomarker development. What's new? Cellular membranes are subject to extensive modification in cancer, often with marked alterations in phospholipid metabolism. The extent and nature of those changes are not fully known, however, particularly for non-small cell lung cancer (NSCLC). In this study, lipidomics analysis of phospholipid profiles uncovered dramatic differences between NSCLC and normal lung tissue. The differences were confirmed via 2D-imaging lipidomics in tissue sections. Lipid markers capable of discriminating between tumor and normal tissue and between different NSCLC subtypes were identified. The observed alterations in NSCLC phospholipid profiles may be biologically significant.
  •  
6.
  • Verhelst, PJ, et al. (författare)
  • Automatic 3D dense phenotyping provides reliable and accurate shape quantification of the human mandible
  • 2021
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1, s. 8532-
  • Tidskriftsartikel (refereegranskat)abstract
    • Automatic craniomaxillofacial (CMF) three dimensional (3D) dense phenotyping promises quantification of the complete CMF shape compared to the limiting use of sparse landmarks in classical phenotyping. This study assesses the accuracy and reliability of this new approach on the human mandible. Classic and automatic phenotyping techniques were applied on 30 unaltered and 20 operated human mandibles. Seven observers indicated 26 anatomical landmarks on each mandible three times. All mandibles were subjected to three rounds of automatic phenotyping using Meshmonk. The toolbox performed non-rigid surface registration of a template mandibular mesh consisting of 17,415 quasi landmarks on each target mandible and the quasi landmarks corresponding to the 26 anatomical locations of interest were identified. Repeated-measures reliability was assessed using root mean square (RMS) distances of repeated landmark indications to their centroid. Automatic phenotyping showed very low RMS distances confirming excellent repeated-measures reliability. The average Euclidean distance between manual and corresponding automatic landmarks was 1.40 mm for the unaltered and 1.76 mm for the operated sample. Centroid sizes from the automatic and manual shape configurations were highly similar with intraclass correlation coefficients (ICC) of > 0.99. Reproducibility coefficients for centroid size were < 2 mm, accounting for < 1% of the total variability of the centroid size of the mandibles in this sample. ICC’s for the multivariate set of 325 interlandmark distances were all > 0.90 indicating again high similarity between shapes quantified by classic or automatic phenotyping. Combined, these findings established high accuracy and repeated-measures reliability of the automatic approach. 3D dense CMF phenotyping of the human mandible using the Meshmonk toolbox introduces a novel improvement in quantifying CMF shape.
  •  
7.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy