SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Figueroa Daniela) "

Sökning: WFRF:(Figueroa Daniela)

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • Andersson, Agneta, et al. (författare)
  • Influence of allochthonous dissolved organic matter on pelagic basal production in a northerly estuary
  • 2018
  • Ingår i: Estuarine, Coastal and Shelf Science. - : Elsevier. - 0272-7714 .- 1096-0015. ; 204, s. 225-235
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytoplankton and heterotrophic bacteria are key groups at the base of aquatic food webs. In estuaries receiving riverine water with a high content of coloured allochthonous dissolved organic matter (ADOM), phytoplankton primary production may be reduced, while bacterial production is favoured. We tested this hypothesis by performing a field study in a northerly estuary receiving nutrient-poor, ADOM-rich riverine water, and analyzing results using multivariate statistics. Throughout the productive season, and especially during the spring river flush, the production and growth rate of heterotrophic bacteria were stimulated by the riverine inflow of dissolved organic carbon (DOC). In contrast, primary production and photosynthetic efficiency (i.e. phytoplankton growth rate) were negatively affected by DOC. Primary production related positively to phosphorus, which is the limiting nutrient in the area. In the upper estuary where DOC concentrations were the highest, the heterotrophic bacterial production constituted almost 100% of the basal production (sum of primary and bacterial production) during spring, while during summer the primary and bacterial production were approximately equal. Our study shows that riverine DOC had a strong negative influence on coastal phytoplankton production, likely due to light attenuation. On the other hand DOC showed a positive influence on bacterial production since it represents a supplementary food source. Thus, in boreal regions where climate change will cause increased river inflow to coastal waters, the balance between phytoplankton and bacterial production is likely to be changed, favouring bacteria. The pelagic food web structure and overall productivity will in turn be altered. (C) 2018 The Authors. Published by Elsevier Ltd.
  •  
3.
  •  
4.
  • Andersson, Agneta, et al. (författare)
  • Metabarcoding vs Microscopy - comparison of methods to monitor phytoplankton communities
  • 2023
  • Ingår i: ACS - ES & T Water. - : American Chemical Society (ACS). - 2690-0637. ; 3:8, s. 2671-2680
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Phytoplankton are used worldwide to monitor environmental status in aquatic systems. Long-time series of microscopy-analyzed phytoplankton are available from many monitoring stations. The microscopy-method is however time consuming and has short-comings. DNA metabarcoding has been suggested as an alternative method, but the consistency between different methods need further investigation. We performed a comparative study of microscopy and metabarcoding analyzing micro- and nanophytoplankton. For metabarcoding, 25-1000 ml seawater were filtered, DNA extracted and the 18S and 16S rRNA gene amplicons sequenced. For microscopy, based on the Utermöhl method we evaluated the use of three metrics: abundance, biovolume and carbon biomass. At the genus, species, and unidentified taxa level, metabarcoding generally showed higher taxonomic diversity than microscopy, and diversity was already captured at the lowest filtration volume tested, 25 ml. Metabarcoding and microscopy displayed relatively similar distribution pattern at the group level. The results showed that the relative abundances of the 18S rRNA amplicon at the group level best fitted the microscopy carbon biomass metric. The results are promising for implementing DNA metabarcoding as a complement to microscopy in phytoplankton monitoring, especially if databases would be improved and group level indexes could be applied to classify the environmental state of water bodies.
  •  
5.
  • Andersson, Agneta, et al. (författare)
  • Microbial food web changes induced by terrestrial organic matter and elevated temperature in the coastal northern Baltic Sea
  • 2023
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media S.A.. - 2296-7745. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change has been projected to cause increased temperature and amplified inflows of terrestrial organic matter to coastal areas in northern Europe. Consequently, changes at the base of the food web favoring heterotrophic bacteria over phytoplankton are expected, affecting the food web structure. We tested this hypothesis using an outdoor shallow mesocosm system in the northern Baltic Sea in early summer, where the effects of increased temperature (+ 3°C) and terrestrial matter inputs were studied following the system dynamics and conducting grazing experiments. Juvenile perch constituted the highest trophic level in the system, which exerted strong predation on the zooplankton community. Perch subsequently released the microbial food web from heavy grazing by mesozooplankton. Addition of terrestrial matter had a stronger effect on the microbial food web than the temperature increase, because terrestrial organic matter and accompanying nutrients promoted both heterotrophic bacterial production and phytoplankton primary production. Moreover, due to the shallow water column in the experiment, terrestrial matter addition did not reduce the light below the photosynthesis saturation level, and in these conditions, the net-autotrophy was strengthened by terrestrial matter enrichment. In combination with elevated temperature, the terrestrial matter addition effects were intensified, further shifting the size distribution of the microbial food web base from picoplankton to microphytoplankton. These changes up the food web led to increase in the biomass and proportion of large-sized ciliates (>60 µm) and rotifers. Despite the shifts in the microbial food web size structure, grazing experiments suggested that the pathway from picoplankton to nano- and microzooplankton constituted the major energy flow in all treatments. The study implies that the microbial food web compartments in shallow coastal waters will adjust to climate induced increased inputs of terrestrial matter and elevated temperature, and that the major energy path will flow from picoplankton to large-sized ciliates during the summer period. 
  •  
6.
  • Andersson, Agneta, et al. (författare)
  • Projected future climate change and Baltic Sea ecosystem management
  • 2015
  • Ingår i: Ambio. - : Springer. - 0044-7447 .- 1654-7209. ; 44:Supplement 3, s. S345-S356
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is likely to have large effects on the Baltic Sea ecosystem. Simulations indicate 2-4 degrees C warming and 50-80 % decrease in ice cover by 2100. Precipitation may increase similar to 30 % in the north, causing increased land runoff of allochthonous organic matter (AOM) and organic pollutants and decreased salinity. Coupled physical-biogeochemical models indicate that, in the south, bottom-water anoxia may spread, reducing cod recruitment and increasing sediment phosphorus release, thus promoting cyanobacterial blooms. In the north, heterotrophic bacteria will be favored by AOM, while phytoplankton production may be reduced. Extra trophic levels in the food web may increase energy losses and consequently reduce fish production. Future management of the Baltic Sea must consider the effects of climate change on the ecosystem dynamics and functions, as well as the effects of anthropogenic nutrient and pollutant load. Monitoring should have a holistic approach, encompassing both autotrophic (phytoplankton) and heterotrophic (e.g., bacterial) processes.
  •  
7.
  • Berglund, Åsa M. M., 1978-, et al. (författare)
  • Effects on the food-web structure and bioaccumulation patterns of organic contaminants in a climate-altered Bothnian Sea mesocosms
  • 2023
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media S.A.. - 2296-7745. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is expected to alter global temperature and precipitation patterns resulting in complex environmental impacts. The proposed higher precipitation in northern Scandinavia would increase runoff from land, hence increase the inflow of terrestrial dissolved organic matter (tDOM) in coastal regions. This could promote heterotrophic bacterial production and shift the food web structure, by favoring the microbial food web. The altered climate is also expected to affect transport and availability of organic micropollutants (MPs), with downstream effects on exposure and accumulation in biota. This study aimed to assess climate-induced changes in a Bothnian Sea food web structure as well as bioaccumulation patterns of MPs. We performed a mesocosms-study, focusing on aquatic food webs with fish as top predator. Alongside increased temperature, mesocosm treatments included tDOM and MP addition. The tDOM addition affected nutrient availability and boosted both phytoplankton and heterotrophic bacteria in our fairly shallow mesocosms. The increased tDOM further benefitted flagellates, ciliates and mesozooplankton, while the temperature increase and MP addition had minor effect on those organism groups. Temperature, on the other hand, had a negative impact on fish growth and survival, whereas tDOM and MP addition only had minor impact on fish. Moreover, there were indications that bioaccumulation of MPs in fish either increased with tDOM addition or decreased at higher temperatures. If there was an impact on bioaccumulation, moderately lipophilic MPs (log Kow 3.6 - 4.6) were generally affected by tDOM addition and more lipophilic MPs (log Kow 3.8 to 6.4) were generally affected by increased temperature. This study suggest that both increased temperatures and addition of tDOM likely will affect bioaccumulation patterns of MPs in shallow coastal regions, albeit with counteracting effects.
  •  
8.
  • Dernoling, Fredrik, et al. (författare)
  • Comparison of factors limiting bacterial growth in different soils
  • 2007
  • Ingår i: Soil Biology & Biochemistry. - : Elsevier BV. - 0038-0717. ; 39:10, s. 2485-2495
  • Tidskriftsartikel (refereegranskat)abstract
    • Lack of carbon has been assumed to be the most common limiting factor for bacterial growth in soil, although there are reports of limitation by other nutrients, e.g. nitrogen and phosphorus. We have studied which nutrient(s) limited instantaneous growth rates of bacteria in 28 Swedish soils using the thymidine or leucine incorporation technique to measure increased growth rate after adding different combinations of organic carbon (glucose), nitrogen and phosphorus. The soils ranged in pH between 3.1 and 8.9, in organic matter content between I% and 91 % and in soil C/N ratio between 10 and 28. We also tested the effect of adding different amounts of carbon on the bacterial change in growth rate for two soils with different organic matter content. We found that bacterial growth in most of the 28 soils was limited by a lack of carbon, indicated by an increased bacterial growth rate 48 h after adding glucose. In some soils, adding carbon together with nitrogen increased the bacterial growth rates even further. In three soils no effects were seen upon adding nutrients separately, but adding carbon and nitrogen together increased bacterial growth rates. Nitrogen addition tended to decrease bacterial growth rates, while phosphorus addition had little effect in most soils. No correlations were found between the soil C/N ratio, ammonium or nitrate content in soil and bacterial growth limitation, indicating that even soils with a C/N ratio of 28 could be carbon limited. Although the interpretation of the effects of a single limiting nutrient was in most cases straightforward, an interaction between the amount of carbon added and the organic matter content of the soil confounded the interpretation of the extent of a second limiting nutrient. (c) 2007 Elsevier Ltd. All rights reserved.
  •  
9.
  • Figueroa, Daniela, 1980-, et al. (författare)
  • Allochthonous Carbon-a Major Driver of Bacterioplankton Production in the Subarctic Northern Baltic Sea
  • 2016
  • Ingår i: Microbial Ecology. - : Springer. - 0095-3628 .- 1432-184X. ; 71:4, s. 789-801
  • Tidskriftsartikel (refereegranskat)abstract
    • Heterotrophic bacteria are, in many aquatic systems, reliant on autochthonous organic carbon as their energy source. One exception is low-productive humic lakes, where allochthonous dissolved organic matter (ADOM) is the major driver. We hypothesized that bacterial production (BP) is similarly regulated in subarctic estuaries that receive large amounts of riverine material. BP and potential explanatory factors were measured during May-August 2011 in the subarctic Råne Estuary, northern Sweden. The highest BP was observed in spring, concomitant with the spring river-flush and the lowest rates occurred during summer when primary production (PP) peaked. PLS correlations showed that ∼60 % of the BP variation was explained by different ADOM components, measured as humic substances, dissolved organic carbon (DOC) and coloured dissolved organic matter (CDOM). On average, BP was threefold higher than PP. The bioavailability of allochthonous dissolved organic carbon (ADOC) exhibited large spatial and temporal variation; however, the average value was low, ∼2 %. Bioassay analysis showed that BP in the near-shore area was potentially carbon limited early in the season, while BP at seaward stations was more commonly limited by nitrogen-phosphorus. Nevertheless, the bioassay indicated that ADOC could contribute significantly to the in situ BP, ∼60 %. We conclude that ADOM is a regulator of BP in the studied estuary. Thus, projected climate-induced increases in river discharge suggest that BP will increase in subarctic coastal areas during the coming century.
  •  
10.
  • Figueroa, Daniela (författare)
  • Bacterioplankton in the Baltic Sea : influence of allochthonous organic matter and salinity
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Climate change is expected to increase the precipitation ~30% in higher latitudes during the next century, increasing the land runoff via rivers to aquatic ecosystems. The Baltic Sea will receive higher river discharges, accompanied by larger input of allochthonous dissolved organic matter (DOM) from terrestrial ecosystems. The salinity will decrease due to freshwater dilution. The allochthonous DOM constitute a potential growth substrate for microscopic bacterioplankton and phytoplankton, which together make up the basal trophic level in the sea. The aim of my thesis is to elucidate the bacterial processing of allochthonous DOM and to evaluate possible consequences of increased runoff on the basal level of the food web in the Baltic Sea. I performed field studies, microcosm experiments and a theoretical modeling study.Results from the field studies showed that allochthonous DOM input via river load promotes the heterotrophic bacterial production and influences the bacterial community composition in the northern Baltic Sea. In a northerly estuary ~60% of bacterial production was estimated to be sustained by terrestrial sources, and allochthonous DOM was a strong structuring factor for the bacterial community composition. Network analysis showed that during spring the diversity and the interactions between the bacteria were relatively low, while later during summer other environmental factors regulate the community, allowing a higher diversity and more interactions between different bacterial groups. The influence of the river inflow on the bacterial community allowed “generalists” bacteria to be more abundant than “specialists” bacteria.   Results from a transplantation experiment, where bacteria were transplanted from the northern Baltic Sea to the seawater from the southern Baltic Sea and vice versa, showed that salinity, as well as the DOM composition affect the bacterial community composition and their enzymatic activity. The results showed that α-proteobacteria in general were favoured by high salinity, β-proteobacteria by low salinity and terrestrial DOM compounds and γ-proteobacteria by the enclosure itself. However, effects on the community composition and enzymatic activity were not consistent when the bacterial community was retransplanted, indicating a functional redundancy of the bacterial communities. Results of ecosystem modeling showed that climate change is likely to have quite different effect on the north and the south of the Baltic Sea. In the south, higher temperature and internal nutrient load will increase the cyanobacterial blooms and expand the anoxic or suboxic areas. In the north, climate induced increase in riverine inputs of allochthonous DOM is likely to promote bacterioplankton production, while phytoplankton primary production will be hampered due to increased light attenuation in the water. This, in turn, can decrease the production at higher trophic levels, since bacteria-based food webs in general are less efficient than food webs based on phytoplankton. However, complex environmental influences on the bacterial community structure and the large redundancy of metabolic functions limit the possibility of predicting how the bacterial community composition will change under climate change disturbances.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21
Typ av publikation
tidskriftsartikel (16)
annan publikation (4)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (15)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Andersson, Agneta (15)
Pinhassi, Jarone (4)
Chang-Claude, Jenny (2)
Gorokhova, Elena, 19 ... (2)
Henderson, Brian E (2)
Haiman, Christopher ... (2)
visa fler...
Chanock, Stephen J (2)
Giles, Graham G (2)
Alonso, Alejandro (1)
Nevanlinna, Heli (1)
Blomqvist, Carl (1)
Aittomäki, Kristiina (1)
Neven, Patrick (1)
Zhu, Bin (1)
Boutron-Ruault, Mari ... (1)
Clavel-Chapelon, Fra ... (1)
Kaaks, Rudolf (1)
Boeing, Heiner (1)
Krogh, Vittorio (1)
Tumino, Rosario (1)
Amiano, Pilar (1)
Khaw, Kay-Tee (1)
Riboli, Elio (1)
Mendoza-Lera, Clara (1)
Datry, Thibault (1)
Wang, Kai (1)
Sun, Kai (1)
Wang, Xin (1)
Wang, Yi (1)
Mannisto, Satu (1)
Zhang, Qian (1)
Xu, Xin (1)
Wang, Qin (1)
Stattin, Pär (1)
Weiderpass, Elisabet ... (1)
Wolk, Alicja (1)
Schumacher, Fredrick ... (1)
Muir, Kenneth (1)
Berndt, Sonja I (1)
Gapstur, Susan M (1)
Stevens, Victoria L (1)
Albanes, Demetrius (1)
Cancel-Tassin, Geral ... (1)
Travis, Ruth C (1)
Kogevinas, Manolis (1)
Cybulski, Cezary (1)
Brenner, Hermann (1)
Teixeira, Manuel R (1)
Neuhausen, Susan L (1)
Gago Dominguez, Manu ... (1)
visa färre...
Lärosäte
Umeå universitet (18)
Linnéuniversitetet (6)
Stockholms universitet (4)
Lunds universitet (2)
Karolinska Institutet (2)
Uppsala universitet (1)
visa fler...
Högskolan i Halmstad (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (21)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (19)
Teknik (2)
Medicin och hälsovetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy