SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Finn Kyle T.) "

Sökning: WFRF:(Finn Kyle T.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hudson, Lawrence N, et al. (författare)
  • The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project
  • 2017
  • Ingår i: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 7:1, s. 145-188
  • Tidskriftsartikel (refereegranskat)abstract
    • The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
  •  
2.
  • Sodergren, Erica, et al. (författare)
  • The genome of the sea urchin Strongylocentrotus purpuratus.
  • 2006
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 314:5801, s. 941-52
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome. The genome encodes about 23,300 genes, including many previously thought to be vertebrate innovations or known only outside the deuterostomes. This echinoderm genome provides an evolutionary outgroup for the chordates and yields insights into the evolution of deuterostomes.
  •  
3.
  • Finn, Kyle T., et al. (författare)
  • Seasonal Changes in Locomotor Activity Patterns of Wild Social Natal Mole-Rats (Cryptomys hottentotus natalensis)
  • 2022
  • Ingår i: Frontiers in Ecology and Evolution. - : Frontiers Media S.A.. - 2296-701X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Differences in individual locomotor activity patterns may be linked to a number of ecological factors, such as changes in ambient temperature or photoperiod. Observations on subterranean mammals suggest that they exhibit diel rhythms despite the lack of visual cues in their underground burrows, but it is unknown how seasonality and individual characteristics affect their activity. In this study we use RFID technology to monitor daily activity patterns of wild, social Natal mole-rats (Cryptomys hottentotus natalensis) during the summer and winter to investigate how their activity varies with season and whether their activity depends on individual characteristics such as body mass, sex and reproductive status. We found that in winter, individuals were more active during the time with the highest soil temperatures, whereas in summer, they showed a bimodal activity pattern during early morning and late afternoon coinciding with cooler soil temperatures. Individual characteristics, including reproductive status, did not affect general activity indicating that reproductive and non-reproductive individuals contribute equally to cooperative behaviors. We suggest that the activity patterns may be a behavioral adaptation to avoid extreme burrow temperatures and a mechanism to maintain a stable core body temperature. We highlight the advantages of RFID technology to study wild small mammal movements.
  •  
4.
  • Finn, Kyle T., et al. (författare)
  • Subterranean Life-Style Does Not Limit Long Distance Dispersal in African Mole-Rats
  • 2022
  • Ingår i: Frontiers in Ecology and Evolution. - : Frontiers Media S.A.. - 2296-701X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Dispersal from the natal site to breeding sites is a crucial phase in the life history of animals and can have profound effects on the reproductive ecology and the structure of animal societies. However, few studies have assessed dispersal dynamics in subterranean mammals and it is unknown whether dispersal distances are constrained by living underground. Here we show, in social, subterranean Damaraland mole-rats (Fukomys damarensis), that a subterranean lifestyle does not preclude long distance dispersal and that both sexes are capable of successfully dispersing long distances (>4 km). Body condition did not predict dispersal distance, but dispersers from larger groups traveled farther than individuals from smaller groups. Subsequently we show in a phylogenetically controlled comparative analysis of dispersal distances in subterranean and surface-dwelling rodents that living underground does not constrain dispersal distances and that dispersal capacity is mainly a consequence of body size in both lifestyles.
  •  
5.
  • Zöttl, Markus, et al. (författare)
  • Capture Order Across Social Bathyergids Indicates Similarities in Division of Labour and Spatial Organisation
  • 2022
  • Ingår i: Frontiers in Ecology and Evolution. - : Frontiers Media S.A.. - 2296-701X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • The social mole-rats of the family Bathyergidae show elaborate social organisation that may include division of labour between breeders and non-breeders as well as across non-breeders within their groups. However, comparative behavioural data across the taxa are rare and contrasts and similarities between species are poorly understood. Field studies of social bathyergids usually involve capturing all group members until the entire group is captured. Because each animal is only captured once and traps are typically placed in close proximity to active foraging areas, the order in which animals are captured provides an indication of the foraging activity of different individuals and of the spatial organisation of the group within the burrow system. Here, we compare the association of capture order with breeding status, sex, and body mass in four species and subspecies of social bathyergids, which vary in group size and represent all three social genera within the family Bathyergidae. We show that in naked and Damaraland mole-rats (Heterocephalus glaber and Fukomys damarensis), male and female breeders are captured later than non-breeders, whereas in two different subspecies of the genus Cryptomys only female breeders are captured later than non-breeders. The effect sizes vary largely and are 10 times larger in naked mole-rats as compared to Fukomys and 3-4 times larger than in Cryptomys. Among non-breeders, sex effects are notably absent in all species and body mass predicted capture order in both naked and Damaraland mole-rats. In naked mole-rats, larger non-breeders were captured earlier than smaller ones, whereas in Damaraland mole-rats intermediate-sized non-breeders were captured first. Our data suggest that there are similarities in behavioural structure and spatial organisation across all social bathyergid species, though the most pronounced differences within groups are found in naked mole-rats.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy