SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Finnilä Mikko A J) "

Sökning: WFRF:(Finnilä Mikko A J)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Finnilä, Mikko A J, et al. (författare)
  • Mineral Crystal Thickness in Calcified Cartilage and Subchondral Bone in Healthy and Osteoarthritic Human Knees
  • 2022
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 1523-4681 .- 0884-0431. ; 37:9, s. 1700-1710
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoarthritis (OA) is the most common joint disease, where articular cartilage degradation is often accompanied with sclerosis of the subchondral bone. However, the association between OA and tissue mineralization at the nanostructural level is currently not understood. In particular, it is technically challenging to study calcified cartilage, where relevant but poorly understood pathological processes such as tidemark multiplication and advancement occur. Here, we used state-of-the-art microfocus small-angle X-ray scattering with a 5-μm spatial resolution to determine the size and organization of the mineral crystals at the nanostructural level in human subchondral bone and calcified cartilage. Specimens with a wide spectrum of OA severities were acquired from both medial and lateral compartments of medial compartment knee OA patients (n = 15) and cadaver knees (n = 10). Opposing the common notion, we found that calcified cartilage has thicker and more mutually aligned mineral crystals than adjoining bone. In addition, we, for the first time, identified a well-defined layer of calcified cartilage associated with pathological tidemark multiplication, containing 0.32 nm thicker crystals compared to the rest of calcified cartilage. Finally, we found 0.2 nm thicker mineral crystals in both tissues of the lateral compartment in OA compared with healthy knees, indicating a loading-related disease process because the lateral compartment is typically less loaded in medial compartment knee OA. In summary, we report novel changes in mineral crystal thickness during OA. Our data suggest that unloading in the knee might be involved with the growth of mineral crystals, which is especially evident in the calcified cartilage.
  •  
2.
  • Orozco, Gustavo A, et al. (författare)
  • Adaptation of Fibril-Reinforced Poroviscoelastic Properties in Rabbit Collateral Ligaments 8 Weeks After Anterior Cruciate Ligament Transection
  • 2023
  • Ingår i: Annals of Biomedical Engineering. - : Springer Science and Business Media LLC. - 1573-9686 .- 0090-6964. ; 51:4, s. 726-740
  • Tidskriftsartikel (refereegranskat)abstract
    • Ligaments of the knee provide stability and prevent excessive motions of the joint. Rupture of the anterior cruciate ligament (ACL), a common sports injury, results in an altered loading environment for other tissues in the joint, likely leading to their mechanical adaptation. In the collateral ligaments, the patterns and mechanisms of biomechanical adaptation following ACL transection (ACLT) remain unknown. We aimed to characterize the adaptation of elastic and viscoelastic properties of the lateral and medial collateral ligaments eight weeks after ACLT. Unilateral ACLT was performed in six rabbits, and collateral ligaments were harvested from transected and contralateral knee joints after eight weeks, and from an intact control group (eight knees from four animals). The cross-sectional areas were measured with micro-computed tomography. Stepwise tensile stress-relaxation testing was conducted up to 6% final strain, and the elastic and viscoelastic properties were characterized with a fibril-reinforced poroviscoelastic material model. We found that the cross-sectional area of the collateral ligaments in the ACL transected knees increased, the nonlinear elastic collagen network modulus of the LCL decreased, and the amount of fast relaxation in the MCL decreased. Our results indicate that rupture of the ACL leads to an early adaptation of the elastic and viscoelastic properties of the collagen fibrillar network in the collateral ligaments. These adaptations may be important to consider when evaluating whole knee joint mechanics after ACL rupture, and the results aid in understanding the consequences of ACL rupture on other tissues.
  •  
3.
  • Ebrahimi, Mohammadhossein, et al. (författare)
  • Associations of human femoral condyle cartilage structure and composition with viscoelastic and constituent-specific material properties at different stages of osteoarthritis
  • 2022
  • Ingår i: Journal of Biomechanics. - : Elsevier BV. - 0021-9290. ; 145
  • Tidskriftsartikel (refereegranskat)abstract
    • The relationships between structure and function in human knee femoral cartilage are not well-known at different stages of osteoarthritis. Thus, our aim was to characterize the depth-dependent composition and structure (proteoglycan content, collagen network organization and collagen content) of normal and osteoarthritic human femoral condyle cartilage (n = 47) and relate them to their viscoelastic and constituent-specific mechanical properties that are obtained through dynamic sinusoidal testing and fibril-reinforced poroelastic material modeling of stress-relaxation testing, respectively. We characterized the proteoglycan content using digital densitometry, collagen network organization (orientation angle and anisotropy) using polarized light microscopy and collagen content using Fourier transform infrared spectroscopy. In the superficial cartilage (0–10 % of thickness), the collagen network disorganization and proteoglycan loss were associated with the smaller initial fibril network modulus - a parameter representing the pretension of the collagen network. Furthermore, the proteoglycan loss was associated with the greater strain-dependent fibril network modulus - a measure of nonlinear mechanical behavior. The proteoglycan loss was also associated with greater cartilage viscosity at a low loading frequency (0.005 Hz), while the collagen network disorganization was associated with greater cartilage viscosity at a high loading frequency (1 Hz). Our results suggest that proteoglycan loss and collagen network disorganization reduce the pretension of the collagen network while proteoglycan degradation also increases the nonlinear mechanical behavior of the collagen network. Further, the results also highlight that proteoglycan loss and collagen disorganization increase the viscosity of femoral cartilage, but their contribution to increased viscosity occurs in completely different loading frequencies.
  •  
4.
  • Ebrahimi, Mohammadhossein, et al. (författare)
  • Elastic, Dynamic Viscoelastic and Model-Derived Fibril-Reinforced Poroelastic Mechanical Properties of Normal and Osteoarthritic Human Femoral Condyle Cartilage
  • 2021
  • Ingår i: Annals of Biomedical Engineering. - : Springer Science and Business Media LLC. - 0090-6964 .- 1573-9686. ; 49:9, s. 2622-2634
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoarthritis (OA) degrades articular cartilage and weakens its function. Modern fibril-reinforced poroelastic (FRPE) computational models can distinguish the mechanical properties of main cartilage constituents, namely collagen, proteoglycans, and fluid, thus, they can precisely characterize the complex mechanical behavior of the tissue. However, these properties are not known for human femoral condyle cartilage. Therefore, we aimed to characterize them from human subjects undergoing knee replacement and from deceased donors without known OA. Multi-step stress-relaxation measurements coupled with sample-specific finite element analyses were conducted to obtain the FRPE material properties. Samples were graded using OARSI scoring to determine the severity of histopathological cartilage degradation. The results suggest that alterations in the FRPE properties are not evident in the moderate stages of cartilage degradation (OARSI 2-3) as compared with normal tissue (OARSI 0-1). Drastic deterioration of the FRPE properties was observed in severely degraded cartilage (OARSI 4). We also found that the FRPE properties of femoral condyle cartilage related to the collagen network (initial fibril-network modulus) and proteoglycan matrix (non-fibrillar matrix modulus) were greater compared to tibial and patellar cartilage in OA. These findings may inform cartilage tissue-engineering efforts and help to improve the accuracy of cartilage representations in computational knee joint models.
  •  
5.
  • Einarsson, Emma, et al. (författare)
  • Relating MR relaxation times of ex vivo meniscus to tissue degeneration through comparison with histopathology
  • 2020
  • Ingår i: Osteoarthritis and Cartilage Open. - : Elsevier BV. - 2665-9131. ; 2:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Quantitative magnetic resonance imaging (MRI), e.g. relaxation parameter mapping, may be sensitive to structural and compositional tissue changes, and could potentially be used to non-invasively detect and monitor early meniscus degeneration related to knee osteoarthritis. Objective: To investigate MR relaxation times as potential biomarkers for meniscus degeneration through comparisons with histopathology. Methods: We measured MR relaxation parameters in the posterior horn of 40 menisci (medial and lateral) at a wide range of degenerative stages. T1, T2 and T2∗ were mapped using standard and ultrashort echo time sequences at 9.4 T and compared to gold standard histology using Pauli's histopathological scoring system, including assessment of surface integrity, collagen organization, cellularity and Safranin-O staining. Results: All three relaxation times increased with total Pauli score (mean difference per score (95% CI) for T2∗: 0.62 (0.37, 0.86), T2: 0.83 (0.53, 1.1) and T1: 24.7 (16.5, 32.8) ms/score). Clear associations were seen with scores of surface integrity (mean difference per score for T2∗: 3.0 (1.8, 4.2), T2: 4.0 (2.5, 5.5) and T1: 116 (75.6, 156) ms/score) and collagen organization (mean difference between highest and lowest score for T2∗: 5.3 (1.6, 8.9), T2: 6.1 (1.7, 11) and T1: 204 (75.9, 332) ms). The results were less clear for the remaining histopathological measures. Conclusions: MR relaxation times T1, T2 and T2∗ of ex vivo human menisci are associated with histologically verified degenerative processes, in particular related to surface integrity and collagen organization. If confirmed in vivo, MR relaxation times may thus be potential biomarkers for meniscus degeneration.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy