SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fjell Anders Martin) "

Sökning: WFRF:(Fjell Anders Martin)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Capogna, Elettra, et al. (författare)
  • Subtypes of brain change in aging and their associations with cognition and Alzheimer's disease biomarkers.
  • 2024
  • Ingår i: bioRxiv : the preprint server for biology.
  • Tidskriftsartikel (refereegranskat)abstract
    • Structural brain changes underly cognitive changes in older age and contribute to inter-individual variability in cognition. Here, we assessed how changes in cortical thickness, surface area, and subcortical volume, are related to cognitive change in cognitively unimpaired older adults using structural magnetic resonance imaging (MRI) data-driven clustering. Specifically, we tested (1) which brain structural changes over time predict cognitive change in older age (2) whether these are associated with core cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarkers phosphorylated tau (p-tau) and amyloid-β (Aβ42), and (3) the degree of overlap between clusters derived from different structural features. In total 1899 cognitively healthy older adults (50 - 93 years) were followed up to 16 years with neuropsychological and structural MRI assessments, a subsample of which (n = 612) had CSF p-tau and Aβ42 measurements. We applied Monte-Carlo Reference-based Consensus clustering to identify subgroups of older adults based on structural brain change patterns over time. Four clusters for each brain feature were identified, representing the degree of longitudinal brain decline. Each brain feature provided a unique contribution to brain aging as clusters were largely independent across modalities. Cognitive change and baseline cognition were best predicted by cortical area change, whereas higher levels of p-tau and Aβ42 were associated with changes in subcortical volume. These results provide insights into the link between changes in brain morphology and cognition, which may translate to a better understanding of different aging trajectories.
  •  
2.
  • Fjell, Anders Martin, et al. (författare)
  • Neuroinflammation and Tau Interact with Amyloid in Predicting Sleep Problems in Aging Independently of Atrophy.
  • 2018
  • Ingår i: Cerebral cortex (New York, N.Y. : 1991). - : Oxford University Press (OUP). - 1460-2199 .- 1047-3211. ; 28:8, s. 2775-2785
  • Tidskriftsartikel (refereegranskat)abstract
    • Sleep problems relate to brain changes in aging and disease, but the mechanisms are unknown. Studies suggest a relationship between β-amyloid (Aβ) accumulation and sleep, which is likely augmented by interactions with multiple variables. Here, we tested how different cerebrospinal fluid (CSF) biomarkers for brain pathophysiology, brain atrophy, memory function, and depressive symptoms predicted self-reported sleep patterns in 91 cognitively healthy older adults over a 3-year period. The results showed that CSF levels of total- and phosphorylated (P) tau, and YKL-40-a marker of neuroinflammation/astroglial activation-predicted poor sleep in Aβ positive older adults. Interestingly, although brain atrophy was strongly predictive of poor sleep, the relationships between CSF biomarkers and sleep were completely independent of atrophy. A joint analysis showed that unique variance in sleep was explained by P-tau and the P-tau × Aβ interaction, memory function, depressive symptoms, and brain atrophy. The results demonstrate that sleep relates to a range of different pathophysiological processes, underscoring the importance of understanding its impact on neurocognitive changes in aging and people with increased risk of Alzheimer's disease.
  •  
3.
  • Idland, Ane-Victoria, et al. (författare)
  • CSF neurofilament light levels predict hippocampal atrophy in cognitively healthy older adults.
  • 2017
  • Ingår i: Neurobiology of aging. - : Elsevier BV. - 1558-1497 .- 0197-4580. ; 49, s. 138-144
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebrospinal fluid (CSF) neurofilament light (NFL) is a marker of axonal degeneration. We tested whether CSF NFL levels predict hippocampal atrophy rate in cognitively healthy older adults independently of the established CSF Alzheimer's disease (AD) biomarkers, β-amyloid 1-42, and phosphorylated tau (P-tau). We included 144 participants in a 2-year longitudinal study with baseline CSF measures and2 magnetic resonance images. Eighty-eight participants had full data available. A subgroup of 36participants with very low AD risk was also studied. NFL predicted hippocampal atrophy rate independently of age, β-amyloid 1-42, and P-tau. Including NFL, P-tau, and age in the same model, higher NFL and lower P-tau predicted higher hippocampal atrophy (R(2)= 0.20, NFL: β=-0.34; p= 0.003; P-tau: β= 0.27; p= 0.009). The results were upheld in the participants with very low AD risk. NFL predicted neurodegeneration in older adults with very low AD probability. We suggest that factors previously shown to be important for brain degeneration in mild cognitive impairment may also impact changes innormal aging, demonstrating that NFL is likely to indicate AD-independent, age-expected neurodegeneration.
  •  
4.
  • Lövdén, Martin, 1972, et al. (författare)
  • No moderating influence of education on the association between changes in hippocampus volume and memory performance in aging
  • 2023
  • Ingår i: Aging Brain. - : Elsevier. - 2589-9589. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Contemporary accounts of factors that may modify the risk for age-related neurocognitive disorders highlight education and its contribution to a cognitive reserve. By this view, individuals with higher educational attainment should show weaker associations between changes in brain and cognition than individuals with lower educational attainment. We tested this prediction in longitudinal data on hippocampus volume and episodic memory from 708 middle-aged and older individuals using local structural equation modeling. This technique does not require categorization of years of education and does not constrain the shape of relationships, thereby maximizing the chances of revealing an effect of education on the hippocampus-memory association. The results showed that the data were plausible under the assumption that there was no influence of education on the association between change in episodic memory and change in hippocampus volume. Restricting the sample to individuals with elevated genetic risk for dementia (APOE ε4 carriers) did not change these results. We conclude that the influence of education on changes in episodic memory and hippocampus volume is inconsistent with predictions by the cognitive reserve theory.
  •  
5.
  • Sala-Llonch, Roser, et al. (författare)
  • Inflammation, Amyloid, and Atrophy in The Aging Brain: Relationships with Longitudinal Changes in Cognition.
  • 2017
  • Ingår i: Journal of Alzheimer's disease : JAD. - 1875-8908. ; 58:3, s. 829-840
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid deposition occurs in aging, even in individuals free from cognitive symptoms, and is often interpreted as preclinical Alzheimer's disease (AD) pathophysiology. YKL-40 is a marker of neuroinflammation, being increased in AD, and hypothesized to interact with amyloid-β (Aβ) in causing cognitive decline early in the cascade of AD pathophysiology. Whether and how Aβ and YKL-40 affect brain and cognitive changes in cognitively healthy older adults is still unknown. We studied 89 participants (mean age: 73.1 years) with cerebrospinal fluid samples at baseline, and both MRI and cognitive assessments from two time-points separated by two years. We tested how baseline levels of Aβ42 and YKL-40 correlated with changes in cortical thickness and cognition. Thickness change correlated with Aβ42 only in Aβ42+ participants (<600 pg/mL, n=27) in the left motor and premotor cortices. Aβ42 was unrelated to cognitive change. Increased YKL-40 was associated with less preservation of scores on the animal naming test in the total sample (r=-0.28, p=0.012) and less preservation of a score reflecting global cognitive function for Aβ42+ participants (r=-0.58, p=0.004). Our results suggest a role for inflammation in brain atrophy and cognitive changes in cognitively normal older adults, which partly depended on Aβ accumulation.
  •  
6.
  • Walhovd, Kristine B., et al. (författare)
  • Timing of lifespan influences on brain and cognition
  • 2023
  • Ingår i: Trends in Cognitive Sciences. - 1364-6613 .- 1879-307X. ; 27:10, s. 901-915
  • Forskningsöversikt (refereegranskat)abstract
    • Modifiable risk and protective factors for boosting brain and cognitive development and preventing neurodegeneration and cognitive decline are embraced in neuroimaging studies. We call for sobriety regarding the timing and quantity of such influences on brain and cognition. Individual differences in the level of brain and cognition, many of which present already at birth and early in development, appear stable, larger, and more pervasive than differences in change across the lifespan. Incorporating early-life factors, including genetics, and investigating both level and change will reduce the risk of ascribing undue importance and causality to proximate factors in adulthood and older age. This has implications for both mechanistic understanding and prevention.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy