SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Flörs A.) "

Sökning: WFRF:(Flörs A.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Agudo, I., et al. (författare)
  • Panning for gold, but finding helium: Discovery of the ultra-stripped supernova SN 2019wxt from gravitational-wave follow-up observations
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 675
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results from multi-wavelength observations of a transient discovered during an intensive follow-up campaign of S191213g, a gravitational wave (GW) event reported by the LIGO-Virgo Collaboration as a possible binary neutron star merger in a low latency search. This search yielded SN 2019wxt, a young transient in a galaxy whose sky position (in the 80% GW contour) and distance (∼150 Mpc) were plausibly compatible with the localisation uncertainty of the GW event. Initially, the transienta's tightly constrained age, its relatively faint peak magnitude (Mi ∼ -16.7 mag), and the r-band decline rate of ∼1 mag per 5 days appeared suggestive of a compact binary merger. However, SN 2019wxt spectroscopically resembled a type Ib supernova, and analysis of the optical-near-infrared evolution rapidly led to the conclusion that while it could not be associated with S191213g, it nevertheless represented an extreme outcome of stellar evolution. By modelling the light curve, we estimated an ejecta mass of only ∼0.1 M·, with 56Ni comprising ∼20% of this. We were broadly able to reproduce its spectral evolution with a composition dominated by helium and oxygen, with trace amounts of calcium. We considered various progenitor channels that could give rise to the observed properties of SN 2019wxt and concluded that an ultra-stripped origin in a binary system is the most likely explanation. Disentangling genuine electromagnetic counterparts to GW events from transients such as SN 2019wxt soon after discovery is challenging: in a bid to characterise this level of contamination, we estimated the rate of events with a volumetric rate density comparable to that of SN 2019wxt and found that around one such event per week can occur within the typical GW localisation area of O4 alerts out to a luminosity distance of 500 Mpc, beyond which it would become fainter than the typical depth of current electromagnetic follow-up campaigns.
  •  
2.
  • De Cia, Annalisa, et al. (författare)
  • Light Curves of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 860:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the light-curve properties of a sample of 26 spectroscopically confirmed hydrogen- poor superluminous supernovae (SLSNe-I) in the Palomar Transient Factory survey. These events are brighter than SNe Ib/c and SNe Ic-BL, on average, by about 4 and 2. mag, respectively. The peak absolute magnitudes of SLSNe-I in rest-frame g band span -22 less than or similar to M-g less than or similar to -20 mag, and these peaks are not powered by radioactive Ni-56, unless strong asymmetries are at play. The rise timescales are longer for SLSNe than for normal SNe Ib/c, by roughly 10 days, for events with similar decay times. Thus, SLSNe-I can be considered as a separate population based on photometric properties. After peak, SLSNe-I decay with a wide range of slopes, with no obvious gap between rapidly declining and slowly declining events. The latter events show more irregularities (bumps) in the light curves at all times. At late times, the SLSN-I light curves slow down and cluster around the 56Co radioactive decay rate. Powering the late-time light curves with radioactive decay would require between 1 and 10M(circle dot) of Ni masses. Alternatively, a simple magnetar model can reasonably fit the majority of SLSNe-I light curves, with four exceptions, and can mimic the radioactive decay of 56Co, up to similar to 400 days from explosion. The resulting spin values do not correlate with the host-galaxy metallicities. Finally, the analysis of our sample cannot strengthen the case for using SLSNe-I for cosmology.
  •  
3.
  • Blondin, Stéphane, et al. (författare)
  • StaNdaRT : a repository of standardised test models and outputs for supernova radiative transfer
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 668
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first results of a comprehensive supernova (SN) radiative-transfer (RT) code-comparison initiative (StaNdaRT), where the emission from the same set of standardised test models is simulated by currently used RT codes. We ran a total of ten codes on a set of four benchmark ejecta models of Type Ia SNe. We consider two sub-Chandrasekhar-mass (Mtot = 1.0 M⊙) toy models with analytic density and composition profiles and two Chandrasekhar-mass delayed-detonation models that are outcomes of hydrodynamical simulations. We adopt spherical symmetry for all four models. The results of the different codes, including the light curves, spectra, and the evolution of several physical properties as a function of radius and time are provided in electronic form in a standard format via a public repository. We also include the detailed test model profiles and several Python scripts for accessing and presenting the input and output files. We also provide the code used to generate the toy models studied here. In this paper, we describe the test models, radiative-transfer codes, and output formats in detail, and provide access to the repository. We present example results of several key diagnostic features.
  •  
4.
  • McBrien, Owen R., et al. (författare)
  • SN2018kzr : A Rapidly Declining Transient from the Destruction of a White Dwarf
  • 2019
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 885:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present SN2018kzr, the fastest declining supernova-like transient, second only to the kilonova, AT2017gfo. SN2018kzr is characterized by a peak magnitude of M-r & xfffd;=& xfffd;?17.98, a peak bolometric luminosity of ?1.4 & xfffd;& x5e0;10(43) erg s(?1), and a rapid decline rate of 0.48 & xfffd;& xfffd;0.03 mag day(?1) in the r band. The bolometric luminosity evolves too quickly to be explained by pure Ni-56 heating, necessitating the inclusion of an alternative powering source. Incorporating the spin-down of a magnetized neutron star adequately describes the lightcurve and we estimate a small ejecta mass of M-ej & xfffd;=& xfffd;0.10 & xfffd;& xfffd;0.05 M. Our spectral modeling suggests the ejecta is composed of intermediate mass elements including O, Si, and Mg and trace amounts of Fe-peak elements, which disfavors a binary neutron star merger. We discuss three explosion scenarios for SN2018kzr, given the low ejecta mass, intermediate mass element composition, and high likelihood of additional powering?the core collapse of an ultra-stripped progenitor, the accretion induced collapse (AIC) of a white dwarf, and the merger of a white dwarf and neutron star. The requirement for an alternative input energy source favors either the AIC with magnetar powering or a white dwarf?neutron star merger with energy from disk wind shocks.
  •  
5.
  • Dhawan, Suhail, et al. (författare)
  • Nebular spectroscopy of SN 2014J : Detection of stable nickel in near-infrared spectra
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 619
  • Tidskriftsartikel (refereegranskat)abstract
    • We present near-infrared (NIR) spectroscopy of the nearby supernova 2014J obtained similar to 450 d after explosion. We detect the [Ni II] 1.939 mu m line in the spectra indicating the presence of stable Ni-58 in the ejecta. The stable nickel is not centrally concentrated but rather distributed as the iron. The spectra are dominated by forbidden [Fe II] and [Co II] lines. We used lines, in the NIR spectra, arising from the same upper energy levels to place constraints on the extinction from host galaxy dust. We find that that our data are in agreement with the high A(v) and low R-v found in earlier studies from data near maximum light. Using a Ni-56 mass prior from near maximum light gamma-ray observations, we find 0.053 +/- 0.018 M-circle dot of stable nickel to be present in the ejecta. We find that the iron group features are redshifted from the host galaxy rest frame by similar to 600 km s(-1).
  •  
6.
  • Flörs, A., et al. (författare)
  • Limits on stable iron in Type Ia supernovae from near-infrared spectroscopy
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 620
  • Tidskriftsartikel (refereegranskat)abstract
    • We obtained optical and near infrared spectra of Type Ia supernovae (SNe Ia) at epochs ranging from 224 to 496 days after the explosion. The spectra show emission lines from forbidden transitions of singly ionised iron and cobalt atoms. We used non-local thermodynamic equilibrium (NLTE) modelling of the first and second ionisation stages of iron, nickel, and cobalt to fit the spectra using a sampling algorithm allowing us to probe a broad parameter space. We derive velocity shifts, line widths, and abundance ratios for iron and cobalt. The measured line widths and velocity shifts of the singly ionised ions suggest a shared emitting region. Our data are fully compatible with radioactive Ni-56 decay as the origin for cobalt and iron. We compare the measured abundance ratios of iron and cobalt to theoretical predictions of various SN Ia explosion models. These models include, in addition to Ni-56, different amounts of Ni-57 and stable Fe-54,Fe-56. We can exclude models that produced only Fe-54,Fe-56 or only Ni-57 in addition to Ni-56. If we consider a model that has Ni-56, Ni-57; and Fe-54,Fe-56 then our data imply that these ratios are Fe-54,Fe-56/Ni-56 = 0.272 +/- 0.086 and Ni-57 / Ni-56 = 0.032 +/- 0.011.
  •  
7.
  • Flörs, A., et al. (författare)
  • Sub-Chandrasekhar progenitors favoured for Type Ia supernovae : evidence from late-time spectroscopy
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 491:2, s. 2902-2918
  • Tidskriftsartikel (refereegranskat)abstract
    • A non-local-thermodynamic-equilibrium level population model of the first and second ionization stages of iron, nickel, and cobalt is used to fit a sample of XShooter optical + near-infrared (NIR) spectra of Type Ia supernovae (SNe Ia). From the ratio of the NIR lines to the optical lines limits can be placed on the temperature and density of the emission region. We find a similar evolution of these parameters across our sample. Using the evolution of the Fe II 12 570 -7155 angstrom line as a prior in fits of spectra covering only the optical wavelengths we show that the 7200 angstrom feature is fully explained by [Fe II] and [Ni II] alone. This approach allows us to determine the abundance of Ni II/Fe II for a large sample of 130 optical spectra of 58 SNe Ia with uncertainties small enough to distinguish between Chandrasekhar mass (MCh) and sub-Chandrasekhar mass (sub-MCh) explosion models. We conclude that the majority (85 per cent) of normal SNe Ia have a Ni/Fe abundance that is in agreement with predictions of sub- MCh explosion simulations of similar to Z(circle dot) progenitors. Only a small fraction (11 per cent) of objects in the sample have a Ni/Fe abundance in agreement with M-Ch explosion models.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy