SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Flejmer Anna M. 1971 ) "

Sökning: WFRF:(Flejmer Anna M. 1971 )

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hörberger, Filip, et al. (författare)
  • Pencil beam scanning proton therapy for mediastinal lymphomas in deep inspiration breath-hold : a retrospective assessment of plan robustness
  • 2024
  • Ingår i: Acta Oncologica. - : Medical Journals Sweden. - 0284-186X .- 1651-226X. ; 63, s. 62-69
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose/background: The aim of this study was to evaluate pencil beam scanning (PBS) proton therapy (PT) in deep inspiration breath-hold (DIBH) for mediastinal lymphoma patients, by retrospectively evaluating plan robustness to the clinical target volume (CTV) and organs at risk (OARs) on repeated CT images acquired throughout treatment.Methods: Sixteen mediastinal lymphoma patients treated with PBS-PT in DIBH were included. Treatment plans (TPs) were robustly optimized on the CTV (7 mm/4.5%). Repeated verification CTs (vCT) were acquired during the treatment course, resulting in 52 images for the entire patient cohort. The CTV and OARs were transferred from the planning CT to the vCTs with deformable image registration and the TPs were recalculated on the vCTs. Target coverage and OAR doses at the vCTs were compared to the nominal plan. Deviation in lung volume was also calculated.Results: The TPs demonstrated high robust target coverage throughout treatment with D98%,CTV deviations within 2% for 14 patients and above the desired requirement of 95% for 49/52 vCTs. However, two patients did not achieve a robust dose to CTV due to poor DIBH reproducibility, with D98%,CTV at 78 and 93% respectively, and replanning was performed for one patient. Adequate OAR sparing was achieved for all patients. Total lung volume variation was below 10% for 39/52 vCTs.Conclusion: PBS PT in DIBH is generally a robust technique for treatment of mediastinal lymphomas. However, closely monitoring the DIBH-reproducibility during treatment is important to avoid underdosing CTV and achieve sufficient dose-sparing of the OARs.
  •  
2.
  • Dasu, Alexandru, et al. (författare)
  • Normal tissue sparing potential of scanned proton beams with and without respiratory gating for the treatment of internal mammary nodes in breast cancer radiotherapy
  • 2018
  • Ingår i: Physica medica (Testo stampato). - : Elsevier BV. - 1120-1797 .- 1724-191X. ; 52, s. 81-85
  • Tidskriftsartikel (refereegranskat)abstract
    • Proton therapy has shown potential for reducing doses to normal tissues in breast cancer radiotherapy. However data on the impact of protons when including internal mammary nodes (IMN) in the target for breast radiotherapy is comparatively scarce. This study aimed to evaluate normal tissue doses when including the IMN in regional RT with scanned proton beams, with and without respiratory gating. The study cohort was composed of ten left-sided breast patients CT-scanned during enhanced inspiration gating (EIG) and free-breathing (FB). Proton plans were designed for the target including or excluding the IMN. Targets and organs-at-risk were delineated according to RTOG guidelines. Comparison was performed between dosimetric parameters characterizing target coverage and OAR radiation burden. Statistical significance of differences was tested using a paired, two-tailed Student's t-test. Inclusion of the IMN in the target volume led to a small increase of the cardiopulmonary burden. The largest differences were seen for the ipsilateral lung where the mean dose increased from 6.1 to 6.6 Gy (RBE) (P < 0.0001) in FB plans and from 6.9 to 7.4 Gy (RBE) (P = 0.003) in EIG plans. Target coverage parameters were very little affected by the inclusion of IMN into the treatment target. Radiotherapy with scanned proton beams has the potential of maintaining low cardiovascular burden when including the IMN into the target, irrespective of whether respiratory gating is used or not.
  •  
3.
  • Droog Tesselaar, Erik, 1977-, et al. (författare)
  • Changes in skin microcirculation during radiation therapy for breast cancer
  • 2017
  • Ingår i: Acta Oncologica. - Oxfordshire : Taylor & Francis. - 0284-186X .- 1651-226X. ; 56:8, s. 1072-1080
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The majority of breast cancer patients who receive radiation treatment are affected by acute radiation-induced skin changes. The assessment of these changes is usually done by subjective methods, which complicates the comparison between different treatments or patient groups. This study investigates the feasibility of new robust methods for monitoring skin microcirculation to objectively assess and quantify acute skin reactions during radiation treatment.MATERIAL AND METHODS: Laser Doppler flowmetry, laser speckle contrast imaging, and polarized light spectroscopy imaging were used to measure radiation-induced changes in microvascular perfusion and red blood cell concentration (RBC) in the skin of 15 patients undergoing adjuvant radiation therapy for breast cancer. Measurements were made before treatment, once a week during treatment, and directly after the last fraction.RESULTS: In the treated breast, perfusion and RBC concentration were increased after 1-5 fractions (2.66-13.3 Gy) compared to baseline. The largest effects were seen in the areola and the medial area. No changes in perfusion and RBC concentration were seen in the untreated breast. In contrast, Radiation Therapy Oncology Group (RTOG) scores were increased only after 2 weeks of treatment, which demonstrates the potential of the proposed methods for early assessment of skin changes. Also, there was a moderate to good correlation between the perfusion (r = 0.52) and RBC concentration (r = 0.59) and the RTOG score given a week later.CONCLUSION: We conclude that radiation-induced microvascular changes in the skin can be objectively measured using novel camera-based techniques before visual changes in the skin are apparent. Objective measurement of microvascular changes in the skin may be valuable in the comparison of skin reactions between different radiation treatments and possibly in predicting acute skin effects at an earlier stage.
  •  
4.
  • Flejmer, Anna M., 1971-, et al. (författare)
  • Impact of physiological breathing motion for breast cancer radiotherapy with proton beam scanning - An in silico study
  • 2017
  • Ingår i: Physica medica (Testo stampato). - : Elsevier BV. - 1120-1797 .- 1724-191X. ; 39, s. 88-94
  • Tidskriftsartikel (refereegranskat)abstract
    • This study investigates the impact of breathing motion on proton breast treatment plans. Twelve patients with CT datasets acquired during breath-hold-at-inhalation (BHI), breath-hold-at-exhalation (BHE) and in free-breathing (FB) were included in the study. Proton plans were designed for the left breast for BHI and subsequently recalculated for BHE or designed for FB and recalculated for the extreme breath-hold phases. The plans were compared from the point of view of their target coverage and doses to organs-at-risk. The median amplitude of breathing motion determined from the positions of the sternum was 4.7 mm (range 0.5-14.6 mm). Breathing motion led to a degradation of the dose coverage of the target (heterogeneity index increased from 4-7% to 8-11%), but the degraded values of the dosimetric parameters of interest fulfilled the clinical criteria for plan acceptance. Exhalation decreased the lung burden [average dose 3.1-4.5 Gy (RBE)], while inhalation increased it [average dose 5.8-6.8 Gy (RBE)]. The individual values depended on the field arrangement. Smaller differences were seen for the heart [average dose 0.1-0.2 Gy (RBE)] and the LAD [1.9-4.6 Gy (RBE)]. Weak correlations were generally found between changes in dosimetric parameters and respiratory motion. The differences between dosimetric parameters for various breathing phases were small and their expected clinical impact is consequently quite small. The results indicated that the dosimetric parameters of the plans corresponding to the extreme breathing phases are little affected by breathing motion, thus suggesting that this motion might have little impact for the chosen beam orientations with scanned proton beams.
  •  
5.
  •  
6.
  • Ödén, Jakob, et al. (författare)
  • The influence of breathing motion and a variable relative biological effectiveness in proton therapy of left-sided breast cancer
  • 2017
  • Ingår i: Acta Oncologica. - : Taylor & Francis. - 0284-186X .- 1651-226X. ; 56:11, s. 1428-1436
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Proton breast radiotherapy has been suggested to improve target coverage as well as reduce cardiopulmonary and integral dose compared with photon therapy. This study aims to assess this potential when accounting for breathing motion and a variable relative biological effectiveness (RBE).Methods: Photon and robustly optimized proton plans were generated to deliver 50 Gy (RBE) in 25 fractions (RBE=1.1) to the CTV (whole left breast) for 12 patients. The plan evaluation was performed using the constant RBE and a variable RBE model. Robustness against breathing motion, setup, range and RBE uncertainties was analyzed using CT data obtained at free-breathing, breath-hold-at-inhalation and breath-hold-at-exhalation.Results: All photon and proton plans (RBE=1.1) met the clinical goals. The variable RBE model predicted an average RBE of 1.18 for the CTVs (range 1.14–1.21) and even higher RBEs in organs at risk (OARs). However, the dosimetric impact of this latter aspect was minor due to low OAR doses. The normal tissue complication probability (NTCP) for the lungs was low for all patients (<1%), and similar for photons and protons. The proton plans were generally considered robust for all patients. However, in the most extreme scenarios, the lowest dose received by 98% of the CTV dropped from 96 to 99% of the prescribed dose to around 92–94% for both protons and photons. Including RBE uncertainties in the robustness analysis resulted in substantially higher worst-case OAR doses.Conclusions: Breathing motion seems to have a minor effect on the plan quality for breast cancer. The variable RBE might impact the potential benefit of protons, but could probably be neglected in most cases where the physical OAR doses are low. However, to be able to identify outlier cases at risk for high OAR doses, the biological evaluation of proton plans taking into account the variable RBE is recommended.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy