SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Flemming Hansen D) "

Search: WFRF:(Flemming Hansen D)

  • Result 1-10 of 14
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Singh, B. P., et al. (author)
  • Experimental access to Transition Distribution Amplitudes with the PANDA experiment at FAIR
  • 2015
  • In: European Physical Journal A. Hadrons and Nuclei. - : Springer Science and Business Media LLC. - 1434-6001 .- 1434-601X. ; 51:8
  • Journal article (peer-reviewed)abstract
    • Baryon-to-meson Transition Distribution Amplitudes (TDAs) encoding valuable new information on hadron structure appear as building blocks in the collinear factorized description for several types of hard exclusive reactions. In this paper, we address the possibility of accessing nucleon-to-pion (pi N) TDAs from (p) over barp -> e(+)e(-)pi(0) reaction with the future PANDA detector at the FAIR facility. At high center-of-mass energy and high invariant mass squared of the lepton pair q(2), the amplitude of the signal channel (p) over barp -> e(+)e(-)pi(0) admits a QCD factorized description in terms of pi N TDAs and nucleon Distribution Amplitudes (DAs) in the forward aid backward kinematic regimes. Assuming the validity of this factorized description, we perform feasibility studies for measuring (p) over barp -> e(+)e(-)pi(0) with the PANDA detector. Detailed simulations on signal reconstruction efficiency as well as on rejection of the most severe background channel, i.e. (p) over barp -> pi(+)pi(-)pi(0) were performed for the center-of-mass energy squared s = 5 GeV2 and s = 10 GeV2, in the kinematic regions 3.0 < q(2) < 4.3 GeV2 and 5 < q(2) < 9 GeV2, respectively, with a neutral pion scattered in the forward or backward cone vertical bar cos theta(pi 0)vertical bar > 0.5 in the proton-antiproton center-of-mass frame. Results of the simulation show that the particle identification capabilities of the PANDA detector will allow to achieve a background rejection factor of 5 . 10(7) (1 . 10(7)) at low (high) q(2) for s = 5 GeV2, and of 1 . 10(8) (6 . 10(6)) at low (high) q(2) for s = 10 GeV2, while keeping the signal reconstruction efficiency at around 40%. At both energies, a clean lepton signal can be reconstructed with the expected statistics corresponding to 2 of integrated luminosity. The cross sections obtained from the simulations are used to show that a test of QCD collinear factorization can be done at the lowest order by measuring scaling laws and angular distributions. The future measurement of the signal channel cross section with PANDA will provide a new test of the perturbative QCD description of a novel class of hard exclusive reactions and will open the possibility of experimentally accessing pi N TDAs.
  •  
2.
  • Erni, W., et al. (author)
  • Technical design report for the PANDA (AntiProton Annihilations at Darmstadt) Straw Tube Tracker
  • 2013
  • In: European Physical Journal A. Hadrons and Nuclei. - : Springer Science and Business Media LLC. - 1434-6001 .- 1434-601X. ; 49:2
  • Journal article (peer-reviewed)abstract
    • This document describes the technical layout and the expected performance of the Straw Tube Tracker (STT), the main tracking detector of the PANDA target spectrometer. The STT encloses a Micro-Vertex-Detector (MVD) for the inner tracking and is followed in beam direction by a set of GEM stations. The tasks of the STT are the measurement of the particle momentum from the reconstructed trajectory and the measurement of the specific energy loss for a particle identification. Dedicated simulations with full analysis studies of certain proton-antiproton reactions, identified as being benchmark tests for the whole PANDA scientific program, have been performed to test the STT layout and performance. The results are presented, and the time lines to construct the STT are described.
  •  
3.
  • Arndt, D. S., et al. (author)
  • STATE OF THE CLIMATE IN 2017
  • 2018
  • In: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 99:8, s. S1-S310
  • Research review (peer-reviewed)
  •  
4.
  •  
5.
  • Auer, Renate, et al. (author)
  • Measuring the Signs of H-1(alpha) Chemical Shift Differences Between Ground and Excited Protein States by Off-Resonance Spin-Lock R-1 rho NMR Spectroscopy
  • 2009
  • In: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 131:31, s. 10832-10833
  • Journal article (peer-reviewed)abstract
    • Analysis of Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion NMR profiles provides the kinetics and thermodynamics of millisecond-time-scale exchange processes involving the interconversion of populated ground and invisible excited states. In addition, the absolute values of chemical, shift differences between NMR probes in the exchanging states, vertical bar Delta(pi)vertical bar, are also extracted. Herein, we present a simple experiment for obtaining the sign of H-1(alpha) Delta(pi) values by measuring off-resonance H-1(alpha) decay rates, R-1 rho, using weak proton spin-lock fields. A pair of R-1 rho values is measured with a spin-lock field applied vertical bar Delta omega vertical bar downfield and upfield of the major-state peak. In many cases, these two relaxation rates differ substantially, with the larger one corresponding to the case where the spin-lock field coincides with the resonance frequency of the probe in the minor state. The utility of the methodology is demonstrated first on a system involving protein ligand exchange and subsequently on an SH3 domain exchanging between a folded state and its on-pathway folding intermediate. With this experiment, it thus becomes possible to determine H-1(alpha) chemical shifts of the invisible excited state, which can be used as powerful restraints in defining the structural properties of these elusive conformers.
  •  
6.
  • Dickman, Rachael, et al. (author)
  • A Chemical Biology Approach to Understanding Molecular Recognition of Lipid II by Nisin(1–12): Synthesis and NMR Ensemble Analysis of Nisin(1–12) and Analogues
  • 2019
  • In: Chemistry - A European Journal. - : Wiley. - 0947-6539 .- 1521-3765. ; 25:64, s. 14572-14582
  • Journal article (peer-reviewed)abstract
    • © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. Natural products that target lipid II, such as the lantibiotic nisin, are strategically important in the development of new antibacterial agents to combat the rise of antimicrobial resistance. Understanding the structural factors that govern the highly selective molecular recognition of lipid II by the N-terminal region of nisin, nisin(1–12), is a crucial step in exploiting the potential of such compounds. In order to elucidate the relationships between amino acid sequence and conformation of this bicyclic peptide fragment, we have used solid-phase peptide synthesis to prepare two novel analogues of nisin(1–12) in which the dehydro residues have been replaced. We have carried out an NMR ensemble analysis of one of these analogues and of the wild-type nisin(1–12) peptide in order to compare the conformations of these two bicyclic peptides. Our analysis has shown the effects of residue mutation on ring conformation. We have also demonstrated that the individual rings of nisin(1–12) are pre-organised to an extent for binding to the pyrophosphate group of lipid II, with a high degree of flexibility exhibited in the central amide bond joining the two rings.
  •  
7.
  • Hansen, D. Flemming, et al. (author)
  • Probing chemical shifts of invisible states of proteins with relaxation dispersion NMR spectroscopy: How well can we do?
  • 2008
  • In: Journal of the American Chemical Society. - : American Chemical Society. - 0002-7863 .- 1520-5126. ; 130:8, s. 2667-2675
  • Journal article (peer-reviewed)abstract
    • Carr−Purcell−Meiboom−Gill relaxation dispersion NMR spectroscopy has evolved into a powerful approach for the study of low populated, invisible conformations of biological molecules. One of the powerful features of the experiment is that chemical shift differences between the exchanging conformers can be obtained, providing structural information about invisible excited states. Through the development of new labeling approaches and NMR experiments it is now possible to measure backbone 13Cα and 13CO relaxation dispersion profiles in proteins without complications from 13C−13C couplings. Such measurements are presented here, along with those that probe exchange using 15N and 1HN nuclei. A key experimental design has been the choice of an exchanging system where excited-state chemical shifts were known from independent measurement. Thus it is possible to evaluate quantitatively the accuracy of chemical shift differences obtained in dispersion experiments and to establish that in general very accurate values can be obtained. The experimental work is supplemented by computations that suggest that similarly accurate shifts can be measured in many cases for systems with exchange rates and populations that fall within the range of those that can be quantified by relaxation dispersion. The accuracy of the extracted chemical shifts opens up the possibility of obtaining quantitative structural information of invisible states of the sort that is now available from chemical shifts recorded on ground states of proteins.
  •  
8.
  • Lundström, Patrik, 1971-, et al. (author)
  • Accurate Measurement of Alpha Proton Chemical Shifts of Excited Protein States by Relaxation Dispersion NMR Spectroscopy
  • 2009
  • In: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 131:5, s. 1915-1926
  • Journal article (peer-reviewed)abstract
    • Carr-Purcell-Meiboom-Gill relaxation dispersion NMR spectroscopy can provide detailed information about low populated, invisible states of protein molecules, including backbone chemical shifts of the invisible conformer and bond vector orientations that can be used as structural constraints. Notably, the measurement of H-1(alpha) chemical shifts in excited protein states has not been possible to date because, in the absence of suitable labeling, the homonuclear proton scalar coupling network in side chains of proteins leads to a significant degradation in the performance of proton-based relaxation dispersion experiments. Here we have overcome this problem through a labeling scheme in which proteins are prepared with U-H-2 glucose and 50% D2O/50% H2O that results in cleuteration levels of between 50-88% at the C-beta carbon. Effects from residual H-1(alpha)-H-1(beta) scalar couplings can be suppressed through a new NMR experiment that is presented here. The utility of the methodology is demonstrated on a ligand binding exchanging system and it is shown that H-1(alpha) chemical shifts extracted from dispersion profiles are, on average, accurate to 0.03 ppm, an order of magnitude better than they can be predicted from structure using a database approach. The ability to measure H-1(alpha) chemical shifts of invisible conformers is particularly important because such shifts are sensitive to both secondary and tertiary structure. Thus, the methodology presented is a valuable addition to a growing list of experiments for characterizing excited protein states that are difficult to study using the traditional techniques of structural biology.
  •  
9.
  • Lundström, Patrik, et al. (author)
  • Fractional 13C enrichment of isolated carbons using [1-13C]- or [2-13C]-glucose facilitates the accurate measurement of dynamics at backbone Ca and side-chain methyl positions in protein
  • 2007
  • In: Journal of Biomolecular NMR. - : Springer Science and Business Media LLC. - 1573-5001 .- 0925-2738. ; 38:3, s. 199-212
  • Journal article (peer-reviewed)abstract
    • A simple labeling approach is presented based on protein expression in [1-C-13]- or [2-C-13]-glucose containing media that produces molecules enriched at methyl carbon positions or backbone C-alpha sites, respectively. All of the methyl groups, with the exception of Thr and Ile(delta 1) are produced with isolated C-13 spins (i.e., no C-13-C-13 one bond couplings), facilitating studies of dynamics through the use of spin-spin relaxation experiments without artifacts introduced by evolution due to large homonuclear scalar couplings. Carbon-alpha sites are labeled without concomitant labeling at C-beta positions for 17 of the common 20 amino acids and there are no cases for which C-13(alpha)-(CO)-C-13 spin pairs are observed. A large number of probes are thus available for the study of protein dynamics with the results obtained complimenting those from more traditional backbone N-15 studies. The utility of the labeling is established by recording C-13 R-1 rho and CPMG-based experiments on a number of different protein systems.
  •  
10.
  • Lundström, Patrik, 1971-, et al. (author)
  • Fractional C-13 enrichment of isolated carbons using [1-C-13]- or [2-C-13]-glucose facilitates the accurate measurement of dynamics at backbone C-alpha and side-chain methyl positions in proteins
  • 2007
  • In: Journal of Biomolecular NMR. - : Springer. - 0925-2738 .- 1573-5001. ; 38:3, s. 199-212
  • Journal article (peer-reviewed)abstract
    • A simple labeling approach is presented based on protein expression in [1-C-13]- or [2-C-13]-glucose containing media that produces molecules enriched at methyl carbon positions or backbone C-alpha sites, respectively. All of the methyl groups, with the exception of Thr and Ile(delta 1) are produced with isolated C-13 spins (i.e., no C-13-C-13 one bond couplings), facilitating studies of dynamics through the use of spin-spin relaxation experiments without artifacts introduced by evolution due to large homonuclear scalar couplings. Carbon-alpha sites are labeled without concomitant labeling at C-beta positions for 17 of the common 20 amino acids and there are no cases for which C-13(alpha)-(CO)-C-13 spin pairs are observed. A large number of probes are thus available for the study of protein dynamics with the results obtained complimenting those from more traditional backbone N-15 studies. The utility of the labeling is established by recording C-13 R-1 rho and CPMG-based experiments on a number of different protein systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view