SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Flodin Susanne) "

Sökning: WFRF:(Flodin Susanne)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Magnusdottir, Audur, et al. (författare)
  • The structure of the PP2A regulatory subunit B56gamma : The remaining piece of the PP2A jigsaw puzzle
  • 2009
  • Ingår i: Proteins. - : Wiley. - 0887-3585 .- 1097-0134. ; 74:1, s. 212-221
  • Tidskriftsartikel (refereegranskat)abstract
    • The PP2A serine/threonine phosphatase regulates a plethora of cellular processes. In the cell the predominant form of the enzyme is a heterotrimer, formed by a core dimer composed of a catalytic and a scaffolding subunit, which assemble together with one of a range of different regulatory B subunits. Here, we present the first structure of a free non-complexed B subunit, B56. Comparison with the recent structures of a heterotrimeric complex and the core dimer reveals several significant conformational changes in the interface region between the B56 and the core dimer. These allow for an assembly scheme of the PP2A holoenzyme to be put forth where B56 first complexes with the scaffolding subunit and subsequently binds to the catalytic subunit and this induces the formation of a binding site for the invariant C-terminus of the catalytic subunit that locks in the complex as a last step of assembly.
  •  
2.
  •  
3.
  • Egeblad, Louise, et al. (författare)
  • Structural and functional studies of the human phosphoribosyltransferase domain containing protein 1
  • 2010
  • Ingår i: The FEBS Journal. - : Wiley. - 1742-464X .- 1742-4658. ; 277:23, s. 4920-30
  • Tidskriftsartikel (refereegranskat)abstract
    • Human hypoxanthine-guanine phosphoribosyltransferase (HPRT) (EC 2.4.2.8) catalyzes the conversion of hypoxanthine and guanine to their respective nucleoside monophosphates. Human HPRT deficiency as a result of genetic mutations is linked to both Lesch-Nyhan disease and gout. In the present study, we have characterized phosphoribosyltransferase domain containing protein 1 (PRTFDC1), a human HPRT homolog of unknown function. The PRTFDC1 structure has been determined at 1.7 Å resolution with bound GMP. The overall structure and GMP binding mode are very similar to that observed for HPRT. Using a thermal-melt assay, a nucleotide metabolome library was screened against PRTFDC1 and revealed that hypoxanthine and guanine specifically interacted with the enzyme. It was subsequently confirmed that PRTFDC1 could convert these two bases into their corresponding nucleoside monophosphate. However, the catalytic efficiency (k(cat)/K(m)) of PRTFDC1 towards hypoxanthine and guanine was only 0.26% and 0.09%, respectively, of that of HPRT. This low activity could be explained by the fact that PRTFDC1 has a Gly in the position of the proposed catalytic Asp of HPRT. In PRTFDC1, a water molecule at the position of the aspartic acid side chain position in HPRT might be responsible for the low activity observed by acting as a weak base. The data obtained in the present study indicate that PRTFDC1 does not have a direct catalytic role in the nucleotide salvage pathway.
  •  
4.
  • Herman, Maria Dolores, et al. (författare)
  • Completing the family portrait of the anti-apoptotic Bcl-2 proteins: Crystal structure of human Bfl-1 in complex with Bim
  • 2008
  • Ingår i: FEBS Letters. - : Wiley. - 0014-5793 .- 1873-3468. ; 582:25-26, s. 3590-3594
  • Tidskriftsartikel (refereegranskat)abstract
    • Evasion of apoptosis is recognized as a characteristic of malignant growth. Anti-apoptotic B-cell lymphoma-2 (Bcl-2) family members have therefore emerged as potential therapeutic targets due to their critical role in proliferating cancer cells. Here, we present the crystal structure of Bfl-1, the last anti-apoptotic Bcl-2 family member to be structurally characterized, in complex with a peptide corresponding to the BH3 region of the pro-apoptotic protein Bim. The structure reveals distinct features at the peptide-binding site, likely to define the binding specificity for pro-apoptotic proteins. Superposition of the Bfl-1:Bim complex with that of Mcl-1:Bim reveals a significant local plasticity of hydrophobic interactions contributed by the Bim peptide, likely to be the basis for the multi specificity of Bim for anti-apoptotic proteins.
  •  
5.
  • Herman, Maria Dolores, et al. (författare)
  • Structures of BIR domains from human NAIP and cIAP2
  • 2009
  • Ingår i: Acta Crystallographica. Section F. - 1744-3091 .- 1744-3091. ; 65, s. 1091-1096
  • Tidskriftsartikel (refereegranskat)abstract
    • The inhibitor of apoptosis (IAP) family of proteins contains key modulators of apoptosis and inflammation that interact with caspases through baculovirus IAP-repeat (BIR) domains. Overexpression of IAP proteins frequently occurs in cancer cells, thus counteracting the activated apoptotic program. The IAP proteins have therefore emerged as promising targets for cancer therapy. In this work, X-ray crystallography was used to determine the first structures of BIR domains from human NAIP and cIAP2. Both structures harbour an N-terminal tetrapeptide in the conserved peptide-binding groove. The structures reveal that these two proteins bind the tetrapeptides in a similar mode as do other BIR domains. Detailed interactions are described for the P1'-P4' side chains of the peptide, providing a structural basis for peptide-specific recognition. An arginine side chain in the P3' position reveals favourable interactions with its hydrophobic moiety in the binding pocket, while hydrophobic residues in the P2' and P4' pockets make similar interactions to those seen in other BIR domain-peptide complexes. The structures also reveal how a serine in the P1' position is accommodated in the binding pockets of NAIP and cIAP2. In addition to shedding light on the specificity determinants of these two proteins, the structures should now also provide a framework for future structure-based work targeting these proteins.
  •  
6.
  •  
7.
  • Patton, Gregory C., et al. (författare)
  • Cofactor mobility determines reaction outcome in the IMPDH and GMPR (beta-alpha)(8) barrel enzymes
  • 2011
  • Ingår i: Nature Chemical Biology. - 1552-4450 .- 1552-4469. ; 7, s. 950-958
  • Tidskriftsartikel (refereegranskat)abstract
    • Inosine monophosphate dehydrogenase (IMPDH) and guanosine monophosphate reductase (GMPR) belong to the same structural family, share a common set of catalytic residues and bind the same ligands. The structural and mechanistic features that determine reaction outcome in the IMPDH and GMPR family have not been identified. Here we show that the GMPR reaction uses the same intermediate E-XMP(star) as IMPDH, but in this reaction the intermediate reacts with ammonia instead of water. A single crystal structure of human GMPR type 2 with IMP and NADPH fortuitously captures three different states, each of which mimics a distinct step in the catalytic cycle of GMPR. The cofactor is found in two conformations: an 'in' conformation poised for hydride transfer and an 'out' conformation in which the cofactor is 6 angstrom from IMP. Mutagenesis along with substrate and cofactor analog experiments demonstrate that the out conformation is required for the deamination of GMP. Remarkably, the cofactor is part of the catalytic machinery that activates ammonia.
  •  
8.
  • Welin, Martin, et al. (författare)
  • Structural studies of tri-functional human GART
  • 2010
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 38:20, s. 7308-19
  • Tidskriftsartikel (refereegranskat)abstract
    • Human purine de novo synthesis pathway contains several multi-functional enzymes, one of which, tri-functional GART, contains three enzymatic activities in a single polypeptide chain. We have solved structures of two domains bearing separate catalytic functions: glycinamide ribonucleotide synthetase and aminoimidazole ribonucleotide synthetase. Structures are compared with those of homologous enzymes from prokaryotes and analyzed in terms of the catalytic mechanism. We also report small angle X-ray scattering models for the full-length protein. These models are consistent with the enzyme forming a dimer through the middle domain. The protein has an approximate seesaw geometry where terminal enzyme units display high mobility owing to flexible linker segments. This resilient seesaw shape may facilitate internal substrate/product transfer or forwarding to other enzymes in the pathway.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy