SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fohner A. E.) "

Sökning: WFRF:(Fohner A. E.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wang, Z., et al. (författare)
  • Genome-wide association analyses of physical activity and sedentary behavior provide insights into underlying mechanisms and roles in disease prevention
  • 2022
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 54:9, s. 1332-1344
  • Tidskriftsartikel (refereegranskat)abstract
    • Although physical activity and sedentary behavior are moderately heritable, little is known about the mechanisms that influence these traits. Combining data for up to 703,901 individuals from 51 studies in a multi-ancestry meta-analysis of genome-wide association studies yields 99 loci that associate with self-reported moderate-to-vigorous intensity physical activity during leisure time (MVPA), leisure screen time (LST) and/or sedentary behavior at work. Loci associated with LST are enriched for genes whose expression in skeletal muscle is altered by resistance training. A missense variant in ACTN3 makes the alpha-actinin-3 filaments more flexible, resulting in lower maximal force in isolated type IIA muscle fibers, and possibly protection from exercise-induced muscle damage. Finally, Mendelian randomization analyses show that beneficial effects of lower LST and higher MVPA on several risk factors and diseases are mediated or confounded by body mass index (BMI). Our results provide insights into physical activity mechanisms and its role in disease prevention. Multi-ancestry meta-analyses of genome-wide association studies for self-reported physical activity during leisure time, leisure screen time, sedentary commuting and sedentary behavior at work identify 99 loci associated with at least one of these traits.
  •  
2.
  • Jones, G., et al. (författare)
  • Genome-wide meta-analysis of muscle weakness identifies 15 susceptibility loci in older men and women
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Low muscle strength is an important heritable indicator of poor health linked to morbidity and mortality in older people. In a genome-wide association study meta-analysis of 256,523 Europeans aged 60 years and over from 22 cohorts we identify 15 loci associated with muscle weakness (European Working Group on Sarcopenia in Older People definition: n=48,596 cases, 18.9% of total), including 12 loci not implicated in previous analyses of continuous measures of grip strength. Loci include genes reportedly involved in autoimmune disease (HLA-DQA1p=4x10(-17)), arthritis (GDF5p=4x10(-13)), cell cycle control and cancer protection, regulation of transcription, and others involved in the development and maintenance of the musculoskeletal system. Using Mendelian randomization we report possible overlapping causal pathways, including diabetes susceptibility, haematological parameters, and the immune system. We conclude that muscle weakness in older adults has distinct mechanisms from continuous strength, including several pathways considered to be hallmarks of ageing. Muscle weakness has been associated with morbidity and mortality in older people. Here, the authors have investigated this trait further by performing a genome-wide meta-analysis of grip strength and Mendelian randomization to discover causal relationships between muscle weakness and other diseases.
  •  
3.
  • Sridhar, Arun R., et al. (författare)
  • Identifying Risk of Adverse Outcomes in COVID-19 Patients via Artificial Intelligence-Powered Analysis of 12-Lead Intake Electrocardiogram.
  • 2022
  • Ingår i: Cardiovascular digital health journal. - : Elsevier. - 2666-6936. ; 3:2, s. 62-74
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Adverse events in COVID-19 are difficult to predict. Risk stratification is encumbered by the need to protect healthcare workers. We hypothesize that AI can help identify subtle signs of myocardial involvement in the 12-lead electrocardiogram (ECG), which could help predict complications.Objective: Use intake ECGs from COVID-19 patients to train AI models to predict risk of mortality or major adverse cardiovascular events (MACE).Methods: We studied intake ECGs from 1448 COVID-19 patients (60.5% male, 63.4±16.9 years). Records were labeled by mortality (death vs. discharge) or MACE (no events vs. arrhythmic, heart failure [HF], or thromboembolic [TE] events), then used to train AI models; these were compared to conventional regression models developed using demographic and comorbidity data.Results: 245 (17.7%) patients died (67.3% male, 74.5±14.4 years); 352 (24.4%) experienced at least one MACE (119 arrhythmic; 107 HF; 130 TE). AI models predicted mortality and MACE with area under the curve (AUC) values of 0.60±0.05 and 0.55±0.07, respectively; these were comparable to AUC values for conventional models (0.73±0.07 and 0.65±0.10). There were no prominent temporal trends in mortality rate or MACE incidence in our cohort; holdout testing with data from after a cutoff date (June 9, 2020) did not degrade model performance.Conclusion: Using intake ECGs alone, our AI models had limited ability to predict hospitalized COVID-19 patients' risk of mortality or MACE. Our models' accuracy was comparable to that of conventional models built using more in-depth information, but translation to clinical use would require higher sensitivity and positive predictive value. In the future, we hope that mixed-input AI models utilizing both ECG and clinical data may be developed to enhance predictive accuracy.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy