SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Foley Joe P.) "

Sökning: WFRF:(Foley Joe P.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Barna, Barnabas, et al. (författare)
  • SN 2019muj-a well-observed Type Iax supernova that bridges the luminosity gap of the class
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 501:1, s. 1078-1099
  • Tidskriftsartikel (refereegranskat)abstract
    • We present early-time (t < +50 d) observations of SN 2019muj (=ASASSN-19tr), one of the best-observed members of the peculiar SN Iax class. Ultraviolet and optical photometric and optical and near-infrared spectroscopic follow-up started from similar to 5 d before maximum light [t(max)(B) on 58707.8 MJD] and covers the photospheric phase. The early observations allow us to estimate the physical properties of the ejecta and characterize the possible divergence from a uniform chemical abundance structure. The estimated bolometric light-curve peaks at 1.05 x 10(42) erg s(-1) and indicates that only 0.031 M-circle dot of Ni-56 was produced, making SN 2019muj a moderate luminosity object in the Iax class with peak absolute magnitude of M-V = -16.4 mag. The estimated date of explosion is t(0) = 58698.2 MJD and implies a short rise time of t(rise) = 9.6 d in B band. We fit of the spectroscopic data by synthetic spectra, calculated via the radiative transfer code TARDIS. Adopting the partially stratified abundance template based on brighter SNe Iax provides a good match with SN 2019muj. However, without earlier spectra, the need for stratification cannot be stated in most of the elements, except carbon, which is allowed to appear in the outer layers only. SN 2019muj provides a unique opportunity to link extremely low-luminosity SNe Iax to well-studied, brighter SNe Iax.
  •  
3.
  • Brout, Dillon, et al. (författare)
  • The Pantheon+ analysis : cosmological constraints
  • 2022
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 938:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present constraints on cosmological parameters from the Pantheon+ analysis of 1701 light curves of 1550 distinct Type Ia supernovae (SNe Ia) ranging in redshift from z = 0.001 to 2.26. This work features an increased sample size from the addition of multiple cross-calibrated photometric systems of SNe covering an increased redshift span, and improved treatments of systematic uncertainties in comparison to the original Pantheon analysis, which together result in a factor of 2 improvement in cosmological constraining power. For a flat ΛCDM model, we find ΩM = 0.334 ± 0.018 from SNe Ia alone. For a flat w0CDM model, we measure w0 = −0.90 ± 0.14 from SNe Ia alone, H0 = 73.5 ± 1.1 km s−1 Mpc−1 when including the Cepheid host distances and covariance (SH0ES), and w0 = -0.978-+0.0310.024 when combining the SN likelihood with Planck constraints from the cosmic microwave background (CMB) and baryon acoustic oscillations (BAO); both w0 values are consistent with a cosmological constant. We also present the most precise measurements to date on the evolution of dark energy in a flat w0waCDM universe, and measure wa = -0.1-+2.00.9 from Pantheon+ SNe Ia alone, H0 = 73.3 ± 1.1 km s−1 Mpc−1 when including SH0ES Cepheid distances, and wa = -0.65-+0.320.28 when combining Pantheon+ SNe Ia with CMB and BAO data. Finally, we find that systematic uncertainties in the use of SNe Ia along the distance ladder comprise less than one-third of the total uncertainty in the measurement of H0 and cannot explain the present “Hubble tension” between local measurements and early universe predictions from the cosmological model.
  •  
4.
  • Freedman, Kevin J., et al. (författare)
  • Nonequilibrium Capture Rates Induce Protein Accumulation and Enhanced Adsorption to Solid-State Nanopores
  • 2014
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 8:12, s. 12238-12249
  • Tidskriftsartikel (refereegranskat)abstract
    • Single molecule capturing of analytes using an electrically biased nanopore is the fundamental mechanism in which nearly all nanopore experiments are conducted. With pore dimensions being on the order of a single molecule, the spatial zone of sensing only contains approximately a zeptoliter of volume. As a result, nanopores offer high precision sensing within the pore but provide little to no information about the analytes outside the pore. In this study, we use capture frequency and rate balance theory to predict and study the accumulation of proteins at the entrance to the pore. Protein accumulation is found to have positive attributes such as capture rate enhancement over time but can additionally lead to negative effects such as long-term blockages typically attributed to protein adsorption on the surface of the pore. Working with the folded and unfolded states of the protein domain PDZ2 from SAP97, we show that applying short (e.g., 3-25 s in duration) positive voltage pulses, rather than a constant voltage, can prevent long-term current blockades (i.e., adsorption events). By showing that the concentration of proteins around the pore can be controlled in real time using modified voltage protocols, new experiments can be explored which study the role of concentration on single molecular kinetics including protein aggregation, folding, and protein binding.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy