SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Fong Loren G.) "

Search: WFRF:(Fong Loren G.)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bergö, Martin, 1970, et al. (author)
  • Genetic analyses of the role of RCE1 in RAS membrane association and transformation.
  • 2008
  • In: Methods in enzymology. - 0076-6879. ; 438, s. 367-89
  • Journal article (peer-reviewed)abstract
    • Proteins terminating with a CAAX motif, such as the nuclear lamins and the RAS family of proteins, undergo post-translational modification of a carboxyl-terminal cysteine with an isoprenyl lipid--a process called protein prenylation. After prenylation, the last three residues of CAAX proteins are clipped off by an endoprotease of the endoplasmic reticulum. RCE1 is responsible for the endoproteolytic processing of the RAS proteins and is likely responsible for endoproteolytic processing of the vast majority of CAAX proteins. Prenylation has been shown to be essential for the proper intracellular targeting and function of several CAAX proteins, but the physiologic importance of the endoprotease step has remained less certain. Here, we will review methods that have been used to define the physiologic importance of the endoproteolytic processing step of CAAX protein processing.
  •  
2.
  • Davies, Brandon S J, et al. (author)
  • GPIHBP1 is responsible for the entry of lipoprotein lipase into capillaries.
  • 2010
  • In: Cell metabolism. - : Elsevier BV. - 1932-7420 .- 1550-4131. ; 12:1, s. 42-52
  • Journal article (peer-reviewed)abstract
    • The lipolytic processing of triglyceride-rich lipoproteins by lipoprotein lipase (LPL) is the central event in plasma lipid metabolism, providing lipids for storage in adipose tissue and fuel for vital organs such as the heart. LPL is synthesized and secreted by myocytes and adipocytes, but then finds its way into the lumen of capillaries, where it hydrolyzes lipoprotein triglycerides. The mechanism by which LPL reaches the lumen of capillaries has remained an unresolved problem of plasma lipid metabolism. Here, we show that GPIHBP1 is responsible for the transport of LPL into capillaries. In Gpihbp1-deficient mice, LPL is mislocalized to the interstitial spaces surrounding myocytes and adipocytes. Also, we show that GPIHBP1 is located at the basolateral surface of capillary endothelial cells and actively transports LPL across endothelial cells. Our experiments define the function of GPIHBP1 in triglyceride metabolism and provide a mechanism for the transport of LPL into capillaries.
  •  
3.
  • Hu, Xuchen, et al. (author)
  • GPIHBP1 expression in gliomas promotes utilization of lipoprotein-derived nutrients
  • 2019
  • In: eLIFE. - : ELIFE SCIENCES PUBLICATIONS LTD. - 2050-084X. ; 8
  • Journal article (peer-reviewed)abstract
    • GPIHBP1, a GPI-anchored protein of capillary endothelial cells, binds lipoprotein lipase (LPL) within the subendothelial spaces and shuttles it to the capillary lumen. GPIHBP1-bound LPL is essential for the margination of triglyceride-rich lipoproteins (TRLs) along capillaries, allowing the lipolytic processing of TRLs to proceed. In peripheral tissues, the intravascular processing of TRLs by the GPIHBP1-LPL complex is crucial for the generation of lipid nutrients for adjacent parenchymal cells. GPIHBP1 is absent from the capillaries of the brain, which uses glucose for fuel; however, GPIHBP1 is expressed in the capillaries of mouse and human gliomas. Importantly, the GPIHBP1 in glioma capillaries captures locally produced LPL. We use NanoSIMS imaging to show that TRLs marginate along glioma capillaries and that there is uptake of TRL-derived lipid nutrients by surrounding glioma cells. Thus, GPIHBP1 expression in gliomas facilitates TRL processing and provides a source of lipid nutrients for glioma cells.
  •  
4.
  • Kristensen, Kristian K., et al. (author)
  • A disordered acidic domain in GPIHBP1 harboring a sulfated tyrosine regulates lipoprotein lipase
  • 2018
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 115:26, s. E6020-E6029
  • Journal article (peer-reviewed)abstract
    • The intravascular processing of triglyceride-rich lipoproteins depends on lipoprotein lipase (LPL) and GPIHBP1, a membrane protein of endothelial cells that binds LPL within the subendothelial spaces and shuttles it to the capillary lumen. In the absence of GPIHBP1, LPL remains mislocalized within the subendothelial spaces, causing severe hypertriglyceridemia (chylomicronemia). The N-terminal domain of GPIHBP1, an intrinsically disordered region (IDR) rich in acidic residues, is important for stabilizing LPL's catalytic domain against spontaneous and ANGPTL4-catalyzed unfolding. Here, we define several important properties of GPIHBP1's IDR. First, a conserved tyrosine in the middle of the IDR is posttranslationally modified by O-sulfation; this modification increases both the affinity of GPIHBP1-LPL interactions and the ability of GPIHBP1 to protect LPL against. ANGPTL4-catalyzed unfolding. Second, the acidic IDR of GPIHBP1 increases the probability of a GPIHBP1-LPL encounter via electrostatic steering, increasing the association rate constant (k(on)) for LPL binding by >250-fold. Third, we show that LPL accumulates near capillary endothelial cells even in the absence of GPIHBP1. In wild-type mice, we expect that the accumulation of LPL in close proximity to capillaries would increase interactions with GPIHBP1. Fourth, we found that GPIHBP1's IDR is not a key factor in the pathogenicity of chylomicronemia in patients with the GPIHBP1 autoimmune syndrome. Finally, based on biophysical studies, we propose that the negatively charged IDR of GPIHBP1 traverses a vast space, facilitating capture of LPL by capillary endothelial cells and simultaneously contributing to GPIHBP1's ability to preserve LPL structure and activity.
  •  
5.
  • Olivecrona, Gunilla, et al. (author)
  • Mutation of conserved cysteines in the Ly6 domain of GPIHBP1 in familial chylomicronemia
  • 2010
  • In: Journal of Lipid Research. - New York : Rockefeller U.P.. - 0022-2275 .- 1539-7262. ; 51:6, s. 1535-1545
  • Journal article (peer-reviewed)abstract
    • We investigated a family from northern Sweden in which three of four siblings have congenital chylomicronemia. Lipoprotein lipase (LPL) activity and mass in pre- and post-heparin plasma were low, and LPL release into plasma after heparin injection was delayed. LPL activity and mass in adipose tissue biopsies appeared normal. [35S]Methionine incorporation studies on adipose tissue showed that newly synthesized LPL was normal in size and normally glycosylated. Breast milk from the affected female subjects contained normal to elevated LPL mass and activity levels. The milk had a lower than normal milk lipid content, and the fatty acid composition was compatible with the milk lipids being derived from de novo lipogenesis, rather than from the plasma lipoproteins. Given the delayed release of LPL into the plasma after heparin, we suspected that the chylomicronemia might be caused by mutations in GPIHBP1. Indeed, all three affected siblings were compound heterozygotes for missense mutations involving highly conserved cysteines in the Ly6 domain of GPIHBP1 (C65S and C68G). The mutant GPIHBP1 proteins reached the surface of transfected CHO cells but were defective in their ability to bind LPL (as judged by both cell-based and cell-free LPL binding assays). Thus, the conserved cysteines in the Ly6 domain are crucial for GPIHBP1 function.
  •  
6.
  • Plengpanich, Wanee, et al. (author)
  • Multimerization of clycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) and familial chylomicronemia from a serine-to-cysteine substitution in GPIHBP1 Ly6 domain
  • 2014
  • In: Journal of Biological Chemistry. - : American Society for Biochemistry and Molecular Biology. - 0021-9258 .- 1083-351X. ; 289:28, s. 19491-19499
  • Journal article (peer-reviewed)abstract
    • GPIHBP1, a glycosylphosphatidylinositol-anchored glycoprotein of microvascular endothelial cells, binds lipoprotein lipase (LPL) within the interstitial spaces and transports it across endothelial cells to the capillary lumen. The ability of GPIHBP1 to bind LPL depends on the Ly6 domain, a three-fingered structure containing 10 cysteines and a conserved pattern of disulfide bond formation. Here, we report a patient with severe hypertriglyceridemia who was homozygous for a GPIHBP1 point mutation that converted a serine in the GPIHBP1 Ly6 domain (Ser-107) to a cysteine. Two hypertriglyceridemic siblings were homozygous for the same mutation. All three homozygotes had very low levels of LPL in the preheparin plasma. We suspected that the extra cysteine in GPIHBP1-S107C might prevent the trafficking of the protein to the cell surface, but this was not the case. However, nearly all of the GPIHBP1-S107C on the cell surface was in the form of disulfide-linked dimers and multimers, whereas wild-type GPIHBP1 was predominantly monomeric. An insect cell GPIHBP1 expression system confirmed the propensity of GPIHBP1-S107C to form disulfide-linked dimers and to form multimers. Functional studies showed that only GPIHBP1 monomers bind LPL. In keeping with that finding, there was no binding of LPL to GPIHBP1-S107C in either cell-based or cell-free binding assays. We conclude that an extra cysteine in the GPIHBP1 Ly6 motif results in multimerization of GPIHBP1, defective LPL binding, and severe hypertriglyceridemia.
  •  
7.
  • Yang, Shao H., et al. (author)
  • Caution! Analyze transcripts from conditional knockout alleles.
  • 2009
  • In: Transgenic research. - : Springer Science and Business Media LLC. - 1573-9368 .- 0962-8819. ; 18:3, s. 483-9
  • Journal article (peer-reviewed)abstract
    • A common strategy for conditional knockout alleles is to "flox" (flank with loxP sites) a 5' exon within the target gene. Typically, the floxed exon does not contain a unit number of codons so that the Cre-mediated recombination event yields a frameshift and a null allele. Documenting recombination within the genomic DNA is often regarded as sufficient proof of a frameshift, and the analysis of transcripts is neglected. We evaluated a previously reported conditional knockout allele for the beta-subunit of protein farnesyltransferase. The recombination event in that allele-the excision of exon 3-was predicted to yield a frameshift. However, following the excision of exon 3, exon 4 was skipped by the mRNA splicing machinery, and the predominant transcript from the mutant allele lacked exon 3 and exon 4 sequences. The "Deltaexon 3-4 transcript" does not contain a frameshift but rather is predicted to encode a protein with a short in-frame deletion. This represents a significant concern when studying an enzyme, since an enzyme with partial function could lead to erroneous conclusions. With thousands of new conditional knockout alleles under construction within mouse mutagenesis consortiums, the protein farnesyltransferase allele holds an important lesson-to characterize knockout alleles at both the DNA and RNA levels.
  •  
8.
  • Yang, Shao H, et al. (author)
  • Severe hepatocellular disease in mice lacking one or both CaaX prenyltransferases.
  • 2012
  • In: Journal of lipid research. - 0022-2275. ; 53:1, s. 77-86
  • Journal article (peer-reviewed)abstract
    • Protein farnesyltransferase (FTase) and protein geranylgeranyltransferase-I (GGTase-I) add 15- or 20-carbon lipids, respectively, to proteins that terminate with a CaaX motif. These posttranslational modifications of proteins with lipids promote protein interactions with membrane surfaces in cells, but the in vivo importance of the CaaX prenyltransferases and the protein lipidation reactions they catalyze remain incompletely defined. One study concluded that a deficiency of FTase was inconsequential in adult mice and led to little or no tissue pathology. To assess the physiologic importance of the CaaX prenyltransferases, we used conditional knockout alleles and an albumin-Cre transgene to produce mice lacking FTase, GGTase-I, or both enzymes in hepatocytes. The hepatocyte-specific FTase knockout mice survived but exhibited hepatocellular disease and elevated transaminases. Mice lacking GGTase-I not only had elevated transaminases but also had dilated bile cannaliculi, hyperbilirubinemia, hepatosplenomegaly, and reduced survival. Of note, GGTase-I-deficient hepatocytes had a rounded shape and markedly reduced numbers of actin stress fibers. Hepatocyte-specific FTase/GGTase-I double-knockout mice closely resembled mice lacking GGTase-I alone, but the disease was slightly more severe. Our studies refute the notion that FTase is dispensable and demonstrate that GGTase-I is crucial for the vitality of hepatocytes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view