SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Forsberg Nilsson Karin Professor) "

Sökning: WFRF:(Forsberg Nilsson Karin Professor)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baskaran, Sathishkumar, 1988- (författare)
  • New Molecular Approaches to Glioblastoma Therapy
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Glioblastoma (GBM) is the most common high-grade brain tumor diagnosed in patients who are more than 50 years of age. The standard of care treatment is surgery, followed by radiotherapy and chemotherapy. The median life expectancy of patients is only between 12 to 15 months after receiving current treatment regimes. Hence, identification of new therapeutic compounds and gene targets are highly warranted. This thesis describes four interlinked studies to attain this goal. In study 1, we explored drug combination effects in a material of 41 patient-derived GBM cell (GC) cultures. Synergies between three compounds, pterostilbene, gefitinib, and sertraline, resulted in effective killing of GC and can be predicted by biomarkers. In study 2, we performed a large-scale screening of FDA approved compounds (n=1544) in a larger panel of GCs (n=106). By combining the large-scale drug response data with GCs genomics data, we built a novel computational model to predict the sensitivity of each compound for a given GC. A notable finding was that GCs respond very differently to proteasome inhibitors in both in-vitro and in-vivo. In study 3, we explored new gene targets by RNAi (n=1112) in a panel of GC cells. We found that loss of transcription factor ZBTB16/PLZF inhibits GC cell viability, proliferation, migration, and invasion. These effects were due to downregulation of c-MYC and Cyclin B1 after the treatment. In study 4, we tested the genomic stability of three GCs upon multiple passaging. Using molecular and mathematical analyses, we showed that the GCs undergo both systematic adaptations and sequential clonal takeovers. Such changes tend to affect a broad spectrum of pathways. Therefore, a systematic analysis of cell culture stability will be essential to make use of primary cells for translational oncology.Taken together, these studies deepen our knowledge of the weak points of GBM and provide several targets and biomarkers for further investigation. The work in this thesis can potentially facilitate the development of targeted therapies and result in more accurate tools for patient diagnostics and stratification. 
  •  
2.
  • Spyrou, Argyris (författare)
  • Heparan Sulfate Proteoglycans in Brain Tumor Development
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Malignant brain tumors are aggressive neoplasms that remain challenging to treat in spite of their detailed molecular characterization. Both adults and children may suffer from brain tumors, which, if not lethal, can cause severe long-term and devastating side effects. The exceptionally invasive behavior of tumor cells, causing infiltrative disease, is among the reasons why these brain tumors often remain fatal. This thesis focuses on a group of molecules of the brain tumor microenvironment, heparan sulfate proteoglycans (HSPGs), and their roles in development of malignant brain tumors. The extracellular matrix in the brain has a unique composition with abundant HSPGs, and the hypothesis was, therefore, that heparan sulfate (HS)-degrading and HS-biosynthetic enzymes may have an important role in glioma and pediatric brain tumors.In our first study, we describe the role of the HS degrading enzyme, heparanase (HPSE), in glioblastoma (GBM) development, as well as its clinical relevance. A series of mechanistic studies revealed the effect of HPSE on signaling pathway activation and its protumorigenic activity in vitro and in vivo.Next, we expanded our work to encompass HPSE in pediatric brain tumors by presenting evidence of high HPSE expression in human tumors, and in cells derived from patients. We showed that tumor cell growth and invasion were increased by HPSE, an effect that could be inhibited by pharmacological treatment against the enzyme, suggesting that HPSE could be a targetable molecule in these tumors.We further explored the molecular mechanisms underlying the pro-tumorigenic properties of HPSE and in study III we describe a novel HPSE-CD24-L1CAM axis which was found to influence glioma tumorigenesis. Clinical data revealed a significantly shorter patient survival in HPSE-high/CD24-high tumors compared to CD24-low tumors, and experiments in mice showed that anti-CD24 and anti-L1CAM treatment inhibited tumor growth.In the fourth study, we investigated the dysregulation of the HS biosynthetic machinery and focused on N-deacetylase/N-sulfotransferase 1 (NDST1) in GBM development. We show overall low NDST1 expression levels across GBM patient samples, and patient-derived cell lines, and that low NDST1 levels correlate to poorer patient survival. Furthermore, altering the NDST1 expression had profound effects on GBM cell invasion, migration and stemness.
  •  
3.
  • Sundström, Johan, Professor, 1971-, et al. (författare)
  • Risk factors for subarachnoid haemorrhage : a nationwide cohort of 950 000 adults
  • 2019
  • Ingår i: International Journal of Epidemiology. - : Oxford University Press. - 0300-5771 .- 1464-3685. ; 48:6, s. 2018-2025
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Subarachnoid haemorrhage (SAH) is a devastating disease, with high mortality rate and substantial disability among survivors. Its causes are poorly understood. We aimed to investigate risk factors for SAH using a novel nationwide cohort consortium.METHODS: We obtained individual participant data of 949 683 persons (330 334 women) between 25 and 90 years old, with no history of SAH at baseline, from 21 population-based cohorts. Outcomes were obtained from the Swedish Patient and Causes of Death Registries.RESULTS: During 13 704 959 person-years of follow-up, 2659 cases of first-ever fatal or non-fatal SAH occurred, with an age-standardized incidence rate of 9.0 [95% confidence interval (CI) (7.4-10.6)/100 000 person-years] in men and 13.8 [(11.4-16.2)/100 000 person-years] in women. The incidence rate increased exponentially with higher age. In multivariable-adjusted Poisson models, marked sex interactions for current smoking and body mass index (BMI) were observed. Current smoking conferred a rate ratio (RR) of 2.24 (95% CI 1.95-2.57) in women and 1.62 (1.47-1.79) in men. One standard deviation higher BMI was associated with an RR of 0.86 (0.81-0.92) in women and 1.02 (0.96-1.08) in men. Higher blood pressure and lower education level were also associated with higher risk of SAH.CONCLUSIONS: The risk of SAH is 45% higher in women than in men, with substantial sex differences in risk factor strengths. In particular, a markedly stronger adverse effect of smoking in women may motivate targeted public health initiatives.
  •  
4.
  • Xiong, Anqi, 1986- (författare)
  • Novel Regulators of Brain Tumor Development : – From neural stem cell differentiation to in vivo models
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Malignant brain tumors are diseases with poor prognosis and/or severe long-term side effects of treatment. This thesis aimed to discover novel regulators in brain tumor development, based on studying neural stem cell and progenitor cell (NSPC) differentiation and using animal models to introduce new insights to mechanisms of human brain tumors.The enzyme heparanase (HPSE) that degrades heparan sulfate (HS) is active in cell signaling and ECM remodeling. In paper I, we found an enhanced differentiation to oligodendrocytes in ES cell-derived NSPCs overexpressing HPSE. Further analysis suggested that this enhanced formation of oligodendrocytes was associated with alterations in receptor tyrosine kinase signaling, and that HPSE might also exert anti-apoptotic functions.Subsequently, in paper II we studied the involvement of HPSE in glioma development. We observed that high HPSE levels associated with poor survival in glioma patients. In experimental models, we found that HPSE promoted glioma growth, and that an inhibitor of HPSE reduced glioma progression both in vitro and in vivo.We hypothesize that regulators in NSPC differentiation could have a potential role in brain tumor development. In paper III, we explored the function of NRBP2, a pseudokinase that is up-regulated during NSPC differentiation. We found low expression of NRBP2 in brain tumors, in comparison to normal brain. In medulloblastoma, in particular, low NRBP2 expression is linked to poor prognosis. Overexpression of NRBP2 in medulloblastoma cells led to impaired cell growth and migration, concomitant with an increased cell death.In paper IV, we searched for novel glioma susceptibility genes by sequencing dog breeds from the same ancestor but with different glioma incidence. In this way we identified three new glioma-associated genes. Two of these are significantly regulated in human glioma and one of those might have a role in glioblastoma stem cell differentiation.
  •  
5.
  • Bergström, Tobias, 1980- (författare)
  • Modeling Neural Stem Cell and Glioma Biology
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis is focused on neural stem cell (NSC) and glioma biology. I discuss how NSCs interact with extracellular matrix (ECM) proteins in the stem cell niche, and investigate the consequences of deregulated Platelet-derived growth factor (PDGF) signaling for embryonic NSCs in transgenic mice. Furthermore I present cell cultures of human glioblastoma multiforme (GBM) that models human disease, taking into account the heterogeneity of GBM. Finally, interactions between brain tumors and mast cells are studied using the glioma cultures.In paper I, the importance of NSC interactions with the ECM in the stem cell niche during development is discussed. Contacts between NSCs and the ECM in the subventricular zone (SVZ) are emerging as important regulatory mechanisms. We show that early postnatal neural stem and progenitor cells (NSPC) attach to collagen I, and that the adhesion is explained by higher expression of collagen receptor integrins compared to adult NSPC. Further, blood vessels in the SVZ express collagen I, indicating a possible functional relationship.Growth factors, e.g. PDGF, regulate NSC proliferation and differentiation. Aberrant activation of growth factor signaling pathways also plays a role in brain tumor formation. Paper II demonstrates that transgenic mice expressing PDGF-B at high levels in embryonic NSCs displayed mild neurological defects but no hyperplasia or brain tumors. This suggests that a high level of PDGF is not sufficient to induce brain tumors from NSCs without further mutations.Paper III presents a novel panel of human glioma stem cell (GSC) lines from GBM that display NSC markers in vitro and form secondary orthotopic tumors in vivo. GBM has recently been categorized in molecular subclasses and we demonstrate, for the first time, that these subclasses can be retained in vitro by stem cell culture conditions. We have thus generated models for research and drug development aiming at a focused treatment depending on GBM subtype.Interactions with the immune system are integral parts of tumorigenesis. Mast cells are found in glioma and in paper IV we demonstrate that the grade-dependent infiltration of mast cells is in part mediated by macrophage migration inhibitory factor and phosphorylation of STAT5.  
  •  
6.
  • Erlandsson, Anna, 1973- (författare)
  • Neural Stem Cell Differentiation and Migration
  • 2003
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Neural stem cells are the precursors of neurons, astrocytes and oligodendrocytes. During neural development, the division of stem cells takes place close to the lumen of the neural tube, after which they migrate to their final positions within the central nervous system (CNS). Soluble factors, including growth factors, regulate neural stem cell proliferation, survival, migration and differentiation towards specific cell lineages.This thesis describes the function of platelet-derived growth factor (PDGF) and stem cell factor (SCF) in neural stem cell regulation. PDGF was previously suggested to stimulate neuronal differentiation, but the mechanisms were not defined. This study shows that PDGF is a mitogen and a survival factor that expands a pool of immature cells from neural stem cells. The PDGF-treated cells can be stained by neuronal markers, but need further stimuli to continue their maturation. They can become either neurons or glia depending on the secondary instructive cues. Moreover, neural stem cells produce PDGF. Inhibition of this endogenous PDGF negatively affects the cell number in stem cell cultures. We find that SCF stimulates migration and supports the survival of neural stem cells, but that it has no effect on their proliferation or differentiation into neurons and glia. Intracellular signaling downstream from the receptors for PDGF and SCF includes activation of extracellular signal-regulated kinase (ERK). This investigation shows that active ERK is not needed for the differentiation of stem cells into neurons, at least not during early stages.Neural stem cells have a future potential in the treatment of CNS disorders. To be able to use neural stem cells clinically we need to understand how their proliferation, differentiation, survival and migration are controlled. The results presented in this thesis increase our knowledge of how neural stem cells are regulated by growth factors.
  •  
7.
  • Göktürk, Camilla, 1967- (författare)
  • Semicarbazide-sensitive Amine Oxidase (SSAO) – Regulation and Involvement in Blood Vessel Damage with Special Regard to Diabetes : A Study on Mice Overexpressing Human SSAO
  • 2004
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Semicarbazide-sensitive amine oxidase (SSAO, EC 1.4.3.6) belongs to a family of copper-containing amine oxidases. SSAO exists as a membrane bound protein in endothelial-, smooth muscle-, and adipose cells as well as soluble in plasma. SSAO catalyses oxidative deamination of primary monoamines, which results in the production of corresponding aldehydes, hydrogen peroxide and ammonia. These compounds are very reactive and potentially cytotoxic, and are able to induce vascular damage if produced in high levels. Patients with diabetes mellitus, and with diabetic complications in particular, have a higher SSAO activity in plasma compared to healthy controls. It has therefore been speculated that high SSAO activity is involved in the development of vascular complications associated with diabetes. The aim of this thesis is to investigate the importance of SSAO in the development of disorders of a vascular origin. We have studied the transcriptional regulation of the SSAO gene, by inducing diabetes in NMRI and in transgenic mice, overexpressing the human form of SSAO in smooth muscle cells. We found that the increase in SSAO activity in diabetes is accompanied by reduced mRNA levels of the endogenous mouse gene, suggesting a negative feedback on the transcription of the SSAO gene. In addition, the transgenic mice exhibited an abnormal phenotype in the elastic tissue of aorta and renal artery. These mice have a lower mean artery pressure and an elevated pulse pressure. These results indicate that high SSAO activity in smooth muscle cells is associated with a change in the morphology of large arteries. This is likely contributing to the development of vascular complications in diabetes.
  •  
8.
  • Larsson, Jimmy, 1977- (författare)
  • Neural Stem and Progenitor Cells : Cellular Responses to Known and Novel Factors
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Neural stem cell self-renewal and differentiation are tightly regulated events during CNS development, leading to cell division into new neural stem cells or the formation of neurons and glial cells. This thesis focuses on the cellular responses induced by known and novel factors in neural stem and progenitor cells (NSPCs).Platelet-derived growth factor (PDGF) signaling has previously been implicated in NSPC regulation as well as in tumor formation. In order to evaluate the differentiation process and find new regulators of NSPCs a micro-array screen was performed, evaluating transcription during normal differentiation and the effect of PDGF-AA in this process. The transcriptional profile of PDGF-AA treated NSPCs was shown to be an intermediate between the profiles of neural stem cells and their progeny. The NSPC transcriptome was also found to have similarities with that of experimental glioma. A previously non-characterized transcript, the nuclear receptor binding protein 2 (NRBP2), was identified and found to be expressed in the developing and adult mouse brain and in medulloblastoma. NRBP2 down-regulation rendered neural progenitors sensitive to induced cell death.Different PDGF ligands interact with different combinations of PDGF receptors. Therefore NSPCs were stimulated with either PDGF-AA or -BB to further evaluate cellular responses with regard to the two specific isoforms. A divergent effect between the two isoforms in long-term proliferation and cell survival was found, with PDGF-BB being the most efficient stimulator.Stem cell factor (SCF) has previously been identified as a regulator in the hematopoietic system and we showed that SCF induces a migratory response in NSPCs. In addition, SCF positively affected cell survival but had no effect on NSPC differentiation. Insights into the regulatory mechanisms involved in neural stem cell signaling are needed to develop diagnostic tools and novel treatments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
doktorsavhandling (7)
tidskriftsartikel (1)
Typ av innehåll
övrigt vetenskapligt/konstnärligt (7)
refereegranskat (1)
Författare/redaktör
Forsberg-Nilsson, Ka ... (3)
Forsberg Nilsson, Ka ... (3)
Olsson, Håkan (1)
Andersson, Martin (1)
Engström, Gunnar (1)
Björck, Martin (1)
visa fler...
Janson, Christer (1)
Wanhainen, Anders (1)
Nilsson, Peter (1)
Torén, Kjell, 1952 (1)
Lind, Lars (1)
Ingelsson, Martin (1)
Eriksson, Marie, Pro ... (1)
Forsberg, Bertil (1)
Wolk, Alicja (1)
Rosengren, Annika, 1 ... (1)
Oreland, Lars (1)
Westermark, Bengt (1)
Lager, Anton (1)
Hallqvist, Johan, 19 ... (1)
Sundström, Johan, Pr ... (1)
Larsson, Susanna C. (1)
Larsson, Jimmy, 1977 ... (1)
Alfredsson, Lars (1)
Magnusson, Cecilia (1)
Järvholm, Bengt (1)
Magnusson, Patrik K ... (1)
Pedersen, Nancy L (1)
Fransson, Eleonor I. ... (1)
Svennblad, Bodil (1)
Theorell-Haglöw, Jen ... (1)
Lindberg, Eva (1)
Söderberg, Stefan (1)
Larhammar, Dan (1)
Michaëlsson, Karl, 1 ... (1)
Nelander, Sven, Asso ... (1)
Leander, Karin (1)
Johansson, Staffan (1)
Lagerros, Ylva Troll ... (1)
Bellocco, Rino (1)
Leppert, Jerzy (1)
Hansson, Per-Olof, 1 ... (1)
Eriksson, Marie (1)
Knutsson, Anders, 19 ... (1)
Spyrou, Argyris (1)
Forsberg Nilsson, Ka ... (1)
Baskaran, Sathishkum ... (1)
Marino, Silvia, Prof ... (1)
Bergström, Tobias, 1 ... (1)
Giedraitis, Vilmanta ... (1)
visa färre...
Lärosäte
Uppsala universitet (8)
Göteborgs universitet (1)
Umeå universitet (1)
Jönköping University (1)
Lunds universitet (1)
Mittuniversitetet (1)
visa fler...
Karolinska Institutet (1)
visa färre...
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (8)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy